
Automorphic Vector Bundles on Shimura Varieties

Kush Singhal

2023

Contents

1 Shimura Varieties 1
1.1 Shimura Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hecke Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The Geometry of ShK(G,X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Canonical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Local Systems and Vector Bundles on Shimura Varieties 6
2.1 Review of Local Systems and the Riemann-Hilbert Correspondence . . . . . . . . . . . . . . . . . 6
2.2 Automorphic Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Computing Automorphic Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Automorphic Local Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 A Note on Automorphy Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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1 Shimura Varieties

A good reference with examples is [Mil05], though the structure of exposition follows [Har13a].

1.1 Shimura Data

We fix some notation. Let S = RC/RGm,C denote the Deligne torus. Then we have

S(R) =
(
R[j]/

〈
j2 + 1

〉 )× ∼= (R⊕Rj)×,

and SC ∼= G2
m,C under the isomorphism

(R⊕Rj)× = SC(R)
∼−→ G2

m,C = (R×)2, a+ bj 7→ (a+ bi, a− bi)
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where i ∈ C ⊂ R is a square root of unity. Let X∗(−) := Hom(−,Gm) and X∗(−) := Hom(Gm,−) be the
character and co-character groups. Then X∗(S)C ∼= Z2 with basis X∗(S)C ∼= Ze1⊕Ze2 where e1(a+ bj) = a+ bi
and e2(a+ bj) = a− bi. Complex conjugation acts on X∗(S)C by swapping e1 and e2.

We have the weight homomorphism w : Gm,R ↪→ S given by w(a) = a+ 0j. This induces the map

w∗ : Z2 ∼= X∗(SC)→ X∗(Gm,R) ∼= Z, (p, q) 7→ p+ q.

Let G be a connected reductive group over Q. Let its Lie algebra be g. We have the adjoint rep Ad : G→
GL(g) with image Gad ∼= G/ZG where ZG is the center of G. We write G(R)+ for the connected component of
G(R) in the real topology, and we set G(Q)+ = G(R)+ ∩G(Q). We let G(R)+ denote the preimage of Gad(R)+
under the map G(R)→ Gad(R), and we set G(Q)+ = G(R)+ ∩G(Q). Let AG denote the connected component
of ZG(R) in the real topology.

Definition. A Shimura datum is a pair (G,X) where G is a reductive group over Q and X is a G(R)-conjugacy
class of homomorphisms h : S→ GR satisfying the following axioms.

SD1 For any h ∈ X, Ad
(
h(j)

)
is a Cartan involution of Gad, i.e. the group

{g ∈ Gad(C) : h(j) · g · h(j)−1 = g}

is a compact Lie group, where − denotes complex conjugation.

SD2 For h ∈ X, only the characters (−1, 1), (0, 0), (1,−1) ∈ X∗(SC) occur in the adjoint representation ad ◦ g :
S→ GL(gC), i.e. we can write

gC ∼= p−h ⊕ p+h ⊕mh

where z ∈ S(R) = C× acts on p−h as multiplication by z/z, on p+h as multiplication by z/z, and acts
trivially on mh.

SD3 (optional) Gad has no non-trivial Q-rational factor G0 such that the projection of h on G0 is trivial.

Remark 1.1. Brian Conrad’s notes, especially Section 5, are an excellent place to gain intuition for why the
axioms are the way they are.

Notice that h ◦ w : Gm,R → GR acts trivially on g by SD2, and so h ◦ w has image in ZG,R. Since we are
taking G(R)-conjugacy classes of morphisms h ∈ X, we see that h ◦ w = h′ ◦ w for any other h′ ∈ X. We thus
have a well-defined weight morphism wX : Gm,R → ZGR attached to our Shimura datum (G,X).

Remark 1.2. Milne defines the weight morphism differently. In his notation, the weight morphism is the inverse
of our weight morphism wX .

Now suppose K is an open compact subgroup K ⊂ G(A∞
Q ), we have

ShK(G,X) := G(Q)\X ×
(
G(A∞

Q )/K
)
.

In fact, equipping G(A∞
Q ) with the adelic topology, we have a homeomorphism

ShK(G,X) ∼=
⊔
i

Γi\X+

where Γi := gKg−1 ∩G(Q)+, X
+ is a connected component of X, and where the disjoint union runs over a set

of coset representatives of the double quotient space

G(Q)+\G(A∞
Q )/K

This double coset space is known to be finite.

Remark 1.3. One checks that G(R)+ is the subgroup of G(R) that stabilizes X+, so that in fact X+ ∼=
G(R)+/Mh(R) where h ∈ X is fixed, Mh(R) is the stabilizer of h in G(R), and X+ is the connected component
of X containing h.
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1.2 Hecke Correspondences

We consider the family ShK(G,X) as K varies through the cofiltered poset of compact opens K in G(A∞
Q ). It

is known that there is a cofinal sub-poset consisting of those K such that ShK(G,X) are smooth manifolds (we
can take for instance the neat subgroups; see [GH22]). For K ′ ⊂ K compact open neat subgroups of G(A∞

Q ), it
is known that the natural map ShK′(G,X)→ ShK(G,X) is smooth.

Now suppose K is a compact open subset of G(A∞
Q ), and g ∈ G(A∞

Q ). Then gKg−1 is another compact
open subset of G(A∞

Q ), and we get an isomorphism

ShgKg−1(G,X)
∼−→ ShK(G,X), [x, a · gKg−1] 7→ [x, ag ·K].

Thus, if K ′ ⊂ gKg−1 is another compact open subgroup, then we can compose the above two maps to get
the family of maps

Tg : ShK′(G,X)→ ShK(G,X)

which on points is given by
G(Q) · (x, hK ′) 7→ G(Q) · (x, hgK).

These maps are finite étale if K and K ′ are neat (see [GH22, Section 15.2]). This family of maps Tg gives a
right action of G(A∞

Q ) on the inverse system (ShK(G,X))K , called the Hecke action.

Definition. The Shimura variety attached to the Shimura datum (G,X) is the inverse system of varieties
(ShK(G,X))K equipped with the given Hecke action. We set

Sh(G,X) := lim←−
K

ShK(G,X),

this is a scheme over C.

Proposition 1.4. For any Shimura datum (G,X), we have

Sh(G,X) =
(
G(Q)/ZG(Q)

)∖
X ×

(
G(A∞

Q )/ZG(Q)
)

where ZG(Q) is the closure of ZG(Q) in the adelic topology of Zg(A∞
Q ).

If ZG(Q) is discrete in Z(A∞
Q ), then we simply have

Sh(G,X) = G(Q)\X ×G(A∞
Q ).

Until now, we have just considered these spaces as topological manifolds. However more is true, as we see
in the next subsection.

1.3 The Geometry of ShK(G,X)

Now fix h ∈ X. Suppose Mh is the stabilizer in GR of the image of h : S → GR; then Mh(R) = AGKh where
Kh is a maximal connected compact subgroup of G(R) (follows from SD2), and we have X ∼= G(R)/AGKh.
Then one immediately sees that Lie(Mh) = mh. Also, adh(i) is an involution and so acts by either ±1 on each
element of g; we see immediately from SD2 that adh(i) acts on gC as −1 on p+h ⊕ p−h and as 1 on mh. Thus, the

−1-eigenspace gad=−1 of adh(i) in g satisfies gad=−1
C = p+h ⊕ p−h , and we have the Cartan decomposition

g = gh ⊕ gad=−1

corresponding to the Cartan involution Adh(i). One checks from a Hodge decomposition argument that p−h is
a commutative Lie subalgebra of gC.

Now, we have an obvious bijectionG(R)/AGKh → X; this endowsX with the structure of a smooth manifold.
Moreover, we see that ph is the tangent space of X at h. We can endow X with a complex structure by setting
the action of i on the tangent space ph to be given by ad(h(ζ4)), where ζ4 is a square root of i (that this actually
yields a complex structure is non-trivial). Hence, X is a complex manifold. Since Γi := gKg−1 ∩ G(Q)+ acts
discretely on X for K small enough, we see that Γi\X+ are complex manifolds for all i, and hence ShK(G,X)
is a complex manifold for all K small enough.

We can in fact do something better.

Proposition 1.5. For K sufficiently small, ShK(G,X) is a quasi-projective complex algebraic variety.
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Remark 1.6. This is shown by taking the Baily-Borel compactification of ShK(G,X), which can be described
easily if Gad has no factors of dimension 3. In this case, if Ω1 is the sheaf of differentials on ShK(G,X) and we

set ω :=
∧d

Ω1 where d = dimX, then we have the graded ring

A :=
⊕
n≥0

Γ
(
ShK(G,X), ω⊗n

)
,

and we have a canonical inclusion ShK(G,X) ↪→ ProjA. The closure of the image of this map is the Baily-
Borel compactification of ShK(G,X). If however Gad has factors of dimension 3, then we must replace
Γ
(
ShK(G,X), ω⊗n

)
with the group of sections having at worst logarithmic singularities along the boundary of

some smooth compactification of ShK(G,X).
See [Lip] for slightly more detail.

Proposition 1.7 (Borel). Let G be a reductive group over Q. Then, the space ShK is compact for some
K ≤ G(A∞

Q ) (equivalently, for all such compact open K) if and only if Gder is Q-anisotropic.

Now, let Ph be the subgroup of GC with Lie algebra ph := p−h ⊕mh (this is the 0th step in the Hodge filtration
of gC induced by µh), and let Uh ⊂ Ph be the subgroup with Lie algebra p−h . We have G(R) ∩ Ph(C) = Mh(R)

Proposition 1.8 ([Mil90, Chap 3, Prop 1.1]). The subgroup Ph is a parabolic subgroup of GC with Levi com-
ponent Mh,C and with unipotent radical Uh. We thus have a smooth open embedding

β = βh : X ↪→ G(C)/Ph(C),

called the Borel embedding, of X into the projective complex algebraic variety X̌ := (G/Ph)(C). This embedding
is equivariant with respect to the G(R)-action on X and the G(C)-action on X̌.

Definition. We call X̌ the compact dual of X.

Note that (G/Ph)(C) is indeed a generalized flag variety. We can view this embedding on points as a certain
embedding of X into a flag variety directly as follows.

For h ∈ X, consider the cocharacter µh defined by

µh : Gm,C → GC, µh(z) = h(z, 1)

where we identify SC = G2
m,C as above. We describe how this cocharacter defines a filtration functor, following

[Mil90].
In general, if µ is a cocharacter of an algebraic group G over a field k of characteristic 0, then for any

k-representation ρ : G→ GL(V ) we can attach a filtration

· · · ⊃ F pV ⊃ F p+1V ⊃ · · · , F pV := ⊕q≥pV
q

on V where
V =

⊕
q∈Z

V q

where ρ ◦ µ : Gm,k → GL(V ) acts on V q by the character z 7→ zq. One checks that this defines a symmetric
monoidal functor

Filt(µ) : Repk(G)→ FiltVectk

such that the diagram of symmetric monoidal functors

Repk(G) FiltVectk

Vectk

Filt(µ)

where the vertical functors are the forgetful functors.

Remark 1.9. Though we will not need this fact, every such functor Repk(G)→ FiltVectk arises (non-uniquely)
from a cocharacter µ in such a way.

Now, suppose we fix a faithful representation ρ : G → GL(V ). Then to each point h ∈ X we have
an associated G(C)filtration Filt(µh)(V ) on V , and so this gives a map from X to a Grassmann variety. One
checks that Ph is the stabilizer of the filtration Filt(µh)(V ), and so in fact the G(C) conjugacy class of filtrations
of V containing Filt(µh(V )) for all h ∈ X is precisely G(C)/Ph(C) ∼= X̌. Hence, the embedding X ↪→ X̌ can be
viewed as the map h 7→ Filt(µh)(V ).
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1.4 Canonical Models

A lot can be said about canonical models of Shimura varieties. We summarize things here.
Consider the map X → X∗(G)C, given by sending h to µh. For h, h′ ∈ X, we see that µh and µh′ are

G(C)-conjugate in X∗(G)C. Thus the Shimura datum in particular picks out a G(C)-conjugacy class MX of
cocharacters in X∗(G)C. However, G is defined over Q. It thus follows that there exists a minimal number field
E = E(G,X) such that MX is the base-change to C of a G(E)-conjugacy class of cocharacters in X∗(G)E .

Definition. Such a minimal number field E is the reflex field of the Shimura datum (G,X).

It is a hard fact of Deligne’s that every Shimura variety admits a canonical model over E, i.e. we can find a
unique inverse system M(G,X) = (MK(G,X))K of varieties over K with a G(A∞

Q ) action such that there is a
G(A∞

Q )-equivariant isomorphism of C-varieties ShK(G,X) ∼= MK(G,X)×E C and Sh(G,X) ∼= M(G,X)×E C.
There are other requiremens for a model over E to be a canonical model, but we ignore them for now.

It is also known that the projective variety X̌ is in fact also defined over the reflex field E.
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2 Local Systems and Vector Bundles on Shimura Varieties

2.1 Review of Local Systems and the Riemann-Hilbert Correspondence

Suppose for now S is a complex manifold.

Definition. A k-local system of vector spaces on S is a locally constant sheaf of k-vector spaces on S.

Given a k-local system V of vector spaces we get a so-called monodromy representation, as follows. Notice
first that if two points lie in the same (path-)connected component, the fibres over the two points will be (non-
canonically) isomorphic via the point. Moreover, this isomorphism between the fibres is uniquely determined by
(and uniquely determines) the path we chose between the two points. Thus, if S is connected, specifying a local
system V is the same as (upon picking a base point x ∈ S) specifying a vector space V ∼= Vx and isomorphisms
σγ : V ∼= V along every loop γ such that if two paths are homotopic, then the isomorphism must be the identity.
Therefore, a k-local system V on a connected space S is the same as a k-representation σ : π1(S, x) → GL(V )
where V := Vx.
Remark 2.1. Similar definitions can be made for a scheme S. In this case, we also obtain a monodromy
representation from a local system, though this time the representation is of the étale fundamental group.

We now consider connections and flat bundles on schemes. We follow [Fon], though Brian Conrad’s notes
also seem to be pretty good. Suppose X is a scheme over S with structure map π : X → S, and let V be a
quasi-coherent OX -module (for instance, V could be a locally free sheaf, i.e. a vector bundle on X).

Definition. A connection on V is a morphism of π−1OS-modules

∇ : V→ V⊗OX
Ω1

X/S ,

satisfying the Leibniz rule
∇(f ⊗ v) = v ⊗ df + f · ∇(v)

for f ∈ OX(U) and v ∈ Γ(U,V), where U is any open S-subscheme of X.

Let TX/S := HomOX
(Ω1

X/S ,OX) be the relative tangent sheaf (sections of this sheaf are vector fields). A

connection induces (and is uniquely determined by) a morphism

TX/S → EndOS
(V), written v 7→ ∇v

where ∇v(e) = ⟨v,∇e⟩ is the covariant derivative of e along v. Notice that

∇v(fe)− v(f)e+ f∇ve

where v(f) = ⟨v, df⟩ is the canonical pairing of vector fields with 1-forms.

Example 2.2. OX can be equipped with the connection d : OX → Ω1
X/S = OX ⊗OX

Ω1
X/S .

Definition. A connection is flat if for any local sections v, w of TX/S we have

∇[v,w] = ∇v ◦ ∇w −∇w ◦ ∇v.

A bundle is flat if it can be equipped with a flat connection.

Of course, all of these definitions carry over to complex manifolds as well (i.e. we take S = C). In fact, these
definitions are compatible with Serre’s GAGA.

Theorem 2.3 (Riemann-Hilbert Correspondence). Suppose X is a complex manifold. Then, the category of
flat vector bundles on M is equivalent to the category of C-local systems of finite rank.

Let us write down this categorical equivalence. Suppose (V,∇) is a flat vector bundle. We have a C-local
system V = V∇ given by

V(U) = {e ∈ V(U) : ∇e = 0}.

On the other hand, suppose V is a C-local system of finite rank. Set V := V ⊗C OX . Then, the map

id⊗ d : V ⊗C OX → V ⊗C Ω1
X = (V ⊗C OX)⊗OX

Ω1
X

is in fact a flat connection
∇ : V → V ⊗OX

Ω1
X .
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2.2 Automorphic Vector Bundles

Our exposition will (mostly) be pulling from [Su18], [Har85], and [Mil90]. The following is a key definition.

Definition. Let S be an algebraic variety over a field k equipped with an action of an algebraic group G. A
G-vector bundle on S is a vector bundle V on S together with an action of G on the total space of V (as an
algebraic variety), such that

• p(g · v) = g · p(v) for all g ∈ G and v ∈ V, where p : V→ S is the projection map from the total space of
the vector bundle onto S; and

• the maps g : Vs → Vgs are linear for all s ∈ S.

We have the obvious analog for vector bundles on manifolds with a Lie group action.

The idea behind automorphic vector bundles is simply this: we want to take a GC vector bundle V on X̌. We
want to descend this vector bundle to get a vector bundle VK on ShK(G,X) for each level K. This bundle turns
out to be algebraic. Manifestly, the global sections of VK are functions on X that are invariant with respect to
discrete subgroups of the form K ∩ G(Q), which is precisely what we want for automorphic forms. However,
there are technical complications that can arise when constructing VK from V, since it is unclear whether after
quotienting by K the vector space structure on the stalks still survives.

A stupid obstruction to constructing VK is if the groups gKg−1 ∩G(Q)+ fail to act discretely with no fixed
points, for then even ShK(G,X) fails to be a manifold. Thus, for instance, we would need to assume that
our level K is neat. Further technical obstructions are in fact closely related to this one; we need the groups
gKg−1 ∩G(Q)+ to act discretely without fixed points on the vector bundle V as well! Different authors impose
slightly (at least superficially) different conditions:

1. Let Zs
G denote the largest subtorus of ZG that splits over R such that no subtorus of Zs

G splits over Q.
Then, we require that Zs

g(C) acts trivially on V (this is how it is phrased in [Mil90]).

2. The maximal Q-split torus in ZG is also the maximal R-split torus in ZG (this is how it is phrased in
[Su18]).

From now on, we will suppose that one of the two conditions hold, and that also G is connected. Fix a point
o ∈ X, and let Po be the corresponding parabolic subgroup of GC so that X̌ ∼= G(C)/Po(C). Then the Levi
factor of Po is Mo,C, where Mo is the stabilizer in GR of the image of h : S→ GR. Recall that Mo(R) = AGKo

where Ko is a maximal compact subgroup of G(R).
Suppose that V is a GC-vector bundle on X̌. The Borel embedding βo : X ↪→ X̌ is an open embedding,

and so the sheaf β∗
oV is still a vector bundle on X. We then obtain a G(A∞

Q )-homogeneous holomorphic vector

bundle β∗V ×
(
G(A∞

Q )/K
)
over X ×

(
G(A∞

Q )/K
)
. Under the above assumptions, for a neat level K the group

G(Q) acts freely on X ×
(
G(A∞

Q )/K
)
, and so we obtain a vector bundle

VK := G(Q)\β∗
oV ×G(A∞

Q )/K

on ShK(G,X).

Definition. An automorphic vector bundle is a bundle VK on ShK(G,X) obtained by the above construction
from a GC-vector bundle VK on X̌.

For each g ∈ G(A∞
Q ) and pair of neat levels K and K ′ such that K ′ ⊂ gKg−1, we get a morphism

VK → VK′ , [x, a] 7→ [x, ag]

just as we had for ShK(G,X). It is clear that the following diagram commutes.

VK′ VK

ShK′(G,X) ShK(G,X)
Tg

(1)

Proposition 2.4. The vector bundles VK and the maps VK′ → VK are algebraic.

Proposition 2.5. If G has no factors of dimension 3, then every holomorphic section of VK is algebraic, and
the space of such sections is finite-dimensional over C.
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Remark 2.6. The requirement that G has no factors of dimension 3 is due to the same issues that show up in
Baily-Borel compactification. In this case, X+ has a factor isomorphic to the unit disk (or what is essentially
the same thing, the upper half-plane). Thus, one has to take care of logarithmic singularities occurring at the
cusps, and so extra conditions are required.

Of course, we can take the limit over all K to then get a vector bundle [V] on Sh. As usual, we get an action
of G(A∞

Q ) on [V], and it turns out that this makes [V] a G(A∞
Q )-homogeneous vector bundle over Sh. The main

theorem of [Har85] is the following.

Theorem 2.7. The functor V → [V] from GC-homogeneous vector bundle on X̌ to G(A∞
Q )-homogeneous vector

bundles on Sh is rational over the reflex field E of the Shimura data (G,X).
Concretely, if V is defined over E, then so is [V].

2.3 Computing Automorphic Vector Bundles

We can construct G(C)-vector bundles as follows. If ρ : Po → GL(V ) is an algebraic representation with V a
finite dimensional C-vector space, then we set

Ṽ := G(C)×Po(C) V =
(
G(C)× V

)
/Po(C)

where p ∈ Po(C) acts on (g, v) ∈ G(C) × V by p · (g, v) = (gp−1, ρ(p)v). There is an obvious projection map
Ṽ → X̌, and it is easy to see that Ṽ is a vector bundle over X̌. The G(C)-action given by multiplying on the left
on the first coordinate makes Ṽ a G(C)-homogeneous bundle. We thus have a vector bundle ṼK on ShK(G,X).

Remark 2.8. The above construction actually defines an equivalence of (symmetric monoidal) categories between
the category of finite-dimensional representations of Po, and the category of G(C)-vector bundles on X̌ =
G(C)/Po(C) [Har90]. If V is a G(C)-vector bundle on X̌, then the fibre Vo at the base point o ∈ X ⊂ X̌ has a
natural action of Po(C).

Now, if V is aMoC-representation, then under the Levi projection Po ↠ Mo we view V as a Po-representation,
and so we have a G(C)-vector bundle on X̌. It turns out that this vector bundle is semi-simple, and in fact,
the above equivalence restricts to an equivalence between the category of finite-dimensional representations of
MoC and semi-simple G(C)-vector bundles on X̌ [EH17].

Remark 2.9. I think β∗
o Ṽ
∼= G(R) ×Ko(R) V as G(R)-homogeneous vector bundles on X, where the action of

Ko(R) on V is obtained by restriction.

Example 2.10. If we take V :=
∧p

(gC/Lie(Po)), then Ṽ = Ωp

X̌
is the bundle of smooth p-forms on X̌. It then

follows that
ṼK = Ωp

ShK(G,X)

is the bundle of smooth p-forms on ShK(G,X).

Let O denote the sheaf of holomorphic functions on the complex manifold ShK(G,X). As usual with
algebraic vector bundles, we can view ṼK as a locally free sheaf of O modules as follows. Consider the quotient
map

πK : G(Q)\G(AQ)/AGK = G(Q)\
(
G(R)/AG ×G(A∞

Q )/K
)
↠ ShK(G,X).

LetG(AQ) = AGG
1(AQ) whereG

1 is the intersection of the kernels of allQ-characters ofG. Write g1 := Lie(G1),
and write p1o = po ∩ g1; then writing aG = Lie(AG) we have ph = po ⊕ aG. There is a natural (p1o,Ko)-module
structure on the space of smooth functions

C∞(π−1
K (U))⊗ V,

for U ⊂ ShK(G,X) open, where V is a Po(C)-module and so is a (p1o,Ko)-module, whereas p1o acts on
C∞(π−1

K (U)) by right differentiation and Ko acts on C∞(π−1
K (U)) by the right regular representation.

Proposition 2.11. ṼK , viewed as a sheaf of O-modules, is the sheaf

U 7→
(
C∞(π−1

K (U))⊗ V
)(p1

o,Ko)
,

where for concreteness(
C∞(π−1

K (U))⊗ V
)(p1

o,Ko)
=
{
f : π−1

K (U)→ V : f smooth, v(f) = 0 ∀v ∈ p1o, and f(gk) = f(g) ∀k ∈ Ko

}
with V endowed with the usual analytic topology induced by the C-vector space structure on V .
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Now suppose K,K ′ are compact open subgroups of G(A∞
Q ). The commuting square (1) yields a natural

isomorphism T ∗
g ṼK

∼= ṼK′ . By the pull-back–push-forward adjunction, we thus have a natural map

ṼK → (Tg)∗ṼK′ .

It is straightforward to check that as sheaf maps, this is simply the map

(
C∞(π−1

K (U))⊗ V
)(p1

o,Ko)
= ṼK(U)→ (Tg)∗ṼK′(U) =

(
C∞(π−1

K′ (T
−1
g (U))

)
⊗ V

)(p1
o,Ko)

f 7→ gf(· g)

for every open U ⊂ ShK(G,X). Here, we can define an action of G(A∞
Q ) action on V as follows: for any

g ∈ G(A∞
Q ), write ag ∈ AG to be the unique element such that g ∈ agG

1(A∞
Q ). Then g acts on V by

multiplication by a−1
g .

2.4 Automorphic Local Systems

Suppose now V is a representation of GC. Then we have a local system

V K := G(Q)\(V ×X ×G(A∞
Q )/K)

on ShK(G,X), for every compact open neat subgroup K ≤ G(A∞
Q ). Here, G(Q) acts on V via the inclusion

G(Q) ↪→ G(C).
Example 2.12. For V the trivial representation of GC, we have V K = C, the sheafification of the constant sheaf
C.

Of course, any representation ρ : GC → GL(V ) of GC restricts to a representation of Po, and so defines
the automorphic vector bundle VK . It turns out that under the Riemann-Hilbert correspondence, the local
system V K corresponds to the vector bundle VK equipped with a certain flat connection. We can construct
this flat connection from ρ directly (we follow the construction in Section 5 of [GP02]). In fact, we define a
G(R)-invariant connection

∇ : ṼK → ṼK ⊗O Ω1
ShK(G,X)

by defining a morphism TShK
→ End(ṼK). First, notice that ρ : GC → GL(V ) induces a map dρ : gC → End(V ).

Now, consider any local vector field v on ShK and local (holomorphic) section f of ṼK . We view f as a smooth
map f : π−1

K (U)→ V such that dρ|p1
o
· f ≡ 0 and f(gk) = ρ(k−1)f(g), where

πK : G(Q)\G(AQ)/AGK → ShK .

Then, we set ∇vf to be the section

(∇vf)(g) := ṽ(f)(g) + ρ(g)dρ(g−1 · ṽ) · f(g),

where ṽ is any lift of v under the map πK , and we consider ρ(g)dρ(g−1 · ṽg) ∈ End(V ) acting on f(g) ∈ V
(where g−1 pushes vg ∈ TgG(C) to T0G(C) = g).

Remark 2.13. In fact, the functor taking a representation ρ : G→ GL(V ) to VK equipped with the above flat
connection defines an equivalence of (symmetric monoidal) categories between the category of finite-dimensional
representations of GC and the category of flat automorphic vector bundles on ShK .

2.5 A Note on Automorphy Factors

Classically, automorphic forms were defined using so-called automorphy factors. That is, an automorphic form
for Γ of type J , for J an automorphy factor, was a function f : X+ → V such that f(γx) = J(γ, x)f(x) and
satisfying other nice conditions (holomorphicity, growth conditions at ∞, etc). For instance, the automorphy
factor for a discrete subgroup Γ of SL2(Z) acting on the upper half plane with values in C given by

J
((

a b
c d

)
, z
)
= (cz + d)k

is classically used to define weight k-modular forms.
Suppose ρ : Po → GL(V ) is a representation with corresponding automorphic vector bundle ṼK . Fix a base

point x0 ∈ X (say x0 = [1] ∈ G(R)/Ko(R)).

Definition. A (holomorphic) automorphy factor for ṼK is a smooth map J : G(R)×X → GL(V ) such that

9



• J(g,−) : X → GL(V ) is holomorphic for all g ∈ G(R),

• J(gg′, x) = J(g, g′x)J(g′, x) for all g, g′ ∈ G(R) and x ∈ X, and

• J(k, x0) = ρ(k) for all k ∈ Po(C) ∩G(R) = Ko(R).

An automorphy factor J determines a holomorphic trivialization

ΦJ : β∗
o Ṽ
∼= G(R)×Ko(R) V → X × V, [h, v] 7→ (hx0, J(h, x0)v)

where the action of G(R) is g · (x, v) = (gx, J(g, x)v).

2.6 Hecke Action on Cohomology of ṼK

We now construct an action of G(A∞
Q ) on the cohomology of bundles on Shimura varieties. Throughout, we

fix a representation (ρ, V ) of Ko. We follow the construction in [Nic20]. A slightly less general construction is
carried out in [GH22], where some concrete discussion also takes place.

Let K and K ′ be arbitrary compact open neat subgroups of G(A∞
Q ), and let g ∈ G(A∞

Q ) be arbitrary. We
have the finite étale map

πK∩g−1K′g,K : ShK∩g−1K′g ↠ ShK ,

which induces a map on cohomology

π∗
K∩g−1K′g,K : H•(ShK , ṼK)→ H•

(
ShK∩g−1K′g, ṼK∩g−1K′g

)
.

Now, we have the right multiplication isomorphism

[g−1] : ShgKg−1∩K′
∼=−→ ShK∩g−1K′g,

which yields an isomorphism

[g−1]∗ : H•(ShK∩g−1K′g, ṼK∩g−1K′g)→ H•
(
ShgKg−1∩K′ , ṼgKg−1∩K′

)
.

We finally construct a trace map

TrgKg−1∩K′,K′ : H• (ShK′ , π̃gKg−1∩K′,K′∗VgKg−1∩K′
)
→ H•(ShK′ , ṼK′).

Write K ′′ := gKg−1 ∩ K ′ for notational simplicity. Since πK′′,K′ is finite étale, the functors (πK′′,K′)! and

(πK′′,K′)∗ coincide. Under the shriek-pushforward–pullback adjunction, the identity map on π∗
K′′,K′ ṼK′ induces

a map
πK′′,K′∗π

∗
K′′,K′ ṼK′ → ṼK′ ,

which on fibres is simply the map

⊕x′∈π−1

K′′,K′ (x)
V ∼=

(
πK′′,K′ ∗π

∗
K′′,K′ ṼK′

)
x
→ V, (vx′)x′∈π−1

K′′,K′ (x)
7→

∑
x′∈π−1

K′′,K′ (x)

vx′ ;

here, we have identified (ṼK′)x ∼= V . Since π∗
K′′,K′ ṼK′ ∼= ṼK′′ , we thus have a map

πK′′,K′∗ṼK′′ → ṼK′ ,

and hence a trace map on cohomology

TrK′′,K′ : H•
(
ShK′ , πK′′,K′∗ṼK′′

)
→ H•(ShK′ , ṼK′).

Of course, the push-forward also induces the map

πK′′,K′∗ : H•
(
ShK′′ , ṼK′′

)
→ H•

(
ShK′ , πK′′,K′∗ṼK′′

)
.

Remark 2.14. This is a general construction, the Méthode de la trace.
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Composing these four maps together, we get the Hecke operator on cohomology

TKgK′ = πK′′,K′∗ ◦ TrK′′,K′ ◦ [g−1]∗ ◦ π∗
g−1K′′g,K : H•(ShK , ṼK)→ H•(ShK′ , ṼK′).

In particular, taking K ′ = K, we get Hecke operators

Tg : H•(ShK , ṼK)→ H•(ShK , ṼK).

It thus follows that we have an action of G(A∞
Q ) on the system

H•(Sh(G,X), Ṽ ) := lim−→
K≤G(A∞

Q )

H•(ShK , ṼK).

For a fixed k, since Hk(ShK , ṼK) is finite dimensional, and since Hk(Sh(G,X), Ṽ )K = Hk(ShK , ṼK)
(resulting from the Hochschild-Sere spectral sequence), it follows that the G(A∞

Q ) on the profinite space

Hk(Sh(G,X), Ṽ ) is an admissible representation.
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3 Toroidal Compactifications and Canonical Extensions of Bundles

We want to study the automorphic vector bundles constructed on the Shimura varieties ShK . We know that ShK

is a quasi-projective variety, and is a Zariski open subset of a projective variety, the Baily-Borel compactification

ShK
BB

of ShK . However, while the Baily-Borel compactification is projective, it has a lot of singularities.

Specifically, the ‘boundary components’ ShK
BB\ShK are usually singular. In particular, extending automorphic

vector bundles to ShK
BB

may be bad, or at the very least, difficult. This is where toroidal compactifications

are useful: they are essentially a family of resolutions of singularities of ShK
BB

indexed by some combinatorial
data. It turns out that automorphic vector bundles do admit extensions to toridal compactifications, and the
cohomology of these extended bundles are interesting. Moreover, there are also nice compatibility-type results
between the cohomology of these extended bundles over different toroidal compactifications.

Compactifications are usually constructed by taking the Hermitian symmetric space and adjoining ‘boundary
components’ and then endowing this union with the Satake topology. The boundary components are usually
indexed by various parabolic subgroups. Then, one tries to extend the action of the discrete group to this
compactification so as to get the quotient.

Fix o ∈ X, and let X+ be its connected component of X. We continue to let H(R)+ denote the identity
component in the real topology for an algebraic group H over R. Let Gder be the derived subgroup of G and
Gad the adjoint group of G. Recall that G(R)+ denotes the stabilizer of X+ under the action of G(R) on π0(X);
equivalently, it the preimage of Gad(R)+ under the map G(R)→ Gad(R).

Let Ko be the image of Ko under the map G(R)→ Gad(R). Since the stabiliser in Gad(R) of a component
is Gad(R)+ and Ko fixes X pointwise, it follows that Ko ⊂ Gad(R)+. Thus

X+ = Gad(R)+/Ko.

Since X is a disjoint union of such X+ (for varying o ∈ X), to compactify X it suffices to compactify X+.
Moreover, as the map G(R)→ Gad(R) is a finite map and the map G(R)+ → Gad(R)+ is a finite covering map
(i.e. is surjective as well), it then follows that Ko is a maximal compact subgroup of Gad(R)+.

Good expositional reference with examples is [Gor05]. Computations of toroidal compactifications of the
modular curve and of Hilbert modular varieties are given in [Ash+10, Section I.4] and [Ash+10, Section I.5]
respectively. The reference [Ash+10] is the canonical reference for toroidal compactifications; indeed, this is
where toroidal compactifications were first written about. However, [Har89] translated toroidal compactifications
to the adelic setting. We thus follow [Har89] for the sections on toroidal compactifications.

Throughout we assume that Gad is connected.

3.1 Boundary Components

Consider the Borel embedding X ↪→ X̌ = G(C)/P (C), where recall X̌ is a projective (generalized) flag variety.

Let X
+
be the closure of X+ in X̌.

Remark 3.1. Some places define X
+

as the closure of X+ in Euclidean space Cm for some m, via the Harish-
Chandra embedding. This is actually the same thing, since the Harish-Chandra embedding is an open embedding

X+ ↪→ p+o /p
+
o ∩ Lie(ZG),

and by [Ash+10, Theorem III.2.1], we have an open embedding

p+o /p
+
o ∩ Lie(ZG) ↪→ X̌.

The image of X+ in p+o /p
+
o ∩ Lie(ZG) is explicitly described in [Ash+10, Theorem III.2.9].

Definition. A boundary component of the symmetric spaceX+ is an analytic submanifold F that is also a single

holomorphic path component, i.e. F is an equivalence class in X
+
under the equivalence relation generated by

xỹ iff there exists a holomorphic map λ : ∆→ X
+
such that x, y ∈ λ(∆), where ∆ = {|z| < 1} is the open unit

disk in C.
Note that X+ is also a boundary component by this definition. We say that a boundary component F is

proper if F ̸= X+, i.e. F ⊂ ∂X+ = X
+ \X+.

A boundary component F is thus a maximal analytic submanifold of X
+
. We include X+ as a ‘boundary

component’, even though it is manifestly not the boundary of X+ in X
+
, to make the statements of various

results a lot neater.
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Remark 3.2. In [Ash+10, Section III.3], one can precisely write down what boundary components F look like
in terms of roots in g.

Here is a collection of all the important facts about boundary components. All of these results are in
[Ash+10, Section III.3].

• X
+

is the disjoint union of boundary components, and Ko acts on the set of boundary components via
permutations.

• If Gad
R decomposes over R into simple factors Gad = G1 ×G2 × · · · ×Gk, then X+ decomposes as

X+ = X+
1 ×X+

2 × · · · ×X+
k

into hermitian symmetric domains. The boundary components of X+ are then precisely the products of
boundary components of each of the simple factors X+

i .

• Each boundary component is itself a bounded symmetric domain. Boundary components of a boundary
component F of X+ are also boundary components of X+.

• For F a boundary component, the normaliser

{g ∈ G(R) : gF = F}

form the real points of a parabolic subgroup PF ⊂ Gad
R . Moreover, two boundary components are equal

if and only if their normalizers coincide. Obviously, PX+ = Gad.

• If Gad is Q-simple, then for any proper boundary component F , PF is a maximal parabolic of Gad.
Moreover, the association F ↔ PF is a 1-1 correspondence between maximal proper parabolics of Gad

R
and proper boundary components.

Definition. A boundary component F of X+ is rational if the corresponding parabolic PF is defined over Q,
i.e. is the base-change to R of a parabolic subgroup of Gad over Q. Obviously, X+ is a rational boundary
component.

There is another way to think about proper rational boundary components (c.f. [Lip]). Suppose P is a
proper maximal parabolic of Gad. Let NP and MP denote its unipotent radical and its Levi factor respectively.
Let KP = Ko∩MP (R). Finally, let AP denote the identity component of R-points of the maximal Q-split torus
in MP . Consider the reductive Borel-Serre component

eRBS(P ) = P (R)/NP (R)APKP .

Then, it turns out that eRBS(P ) contains a unique factor F that is a Hermitian symmetric domain. It turns
out that F is the unique boundary component of X+ satisfying PF = P .

3.2 Baily-Borel compactification and the Satake topology

Let X+
BB

, as a set, be the disjoint union of X+ with its rational boundary components. Obviously, this is a

subset of X
+ ⊂ X̌. However, the topology we will endow on X+

BB
is going to be different from the subspace

topology induced from X̌.
The reason for this is simple. Given a discrete subgroup Γ < Aut(X+) (say Γ = G(Q) ∩K for K ⊂ G(A∞

Q )

a compact open), we can extend the action of Γ to (the set) X+
BB

. For example, if X+ = h is the upper half

plane, then X+
BB

is given by h = h ∪Q ∪ {∞} as expected. Following the example of the modular curve, we

would like to define the Baily-Borel compactification of Γ\X+ to be Γ\X+
BB

. However, this latter quotient is

not Hausdorff. The issue is that Γ fails to act discretely on X+
BB\X+, and this is simply because the subspace

topology from the Borel embedding does not provide enough open sets. We thus need to retopologise. We in
fact see this issue crop up in the example of the upper half plane. Endowing h with the subspace topology from
P1(C) = C ∪ {∞}, the boundary is very pathological, and the quotient SL2(Z)\h fails to be Hausdorff at the
cusp ∞.

We retopologise with the Satake topology. For a point p ∈ X+ ⊂ X+
BB

, this is just the usual topology on

X+. On the other hand, suppose p ∈ X+
BB \X+. Fix some choice of minimal Q-parabolic of Gad. Fix any

arithmetic subgroup Γ ⊂ Gad(Q) and let ΩΓ = C ·S ⊂ X+ be some fundamental set for Γ, where C ⊂ Gad(Q)
is some finite subset and where S is a Siegel set with respect to the minimal Q-parabolic (see [GH22, Section
2.7] for more on Siegel sets). Then, by definition, a fundamental system of neighbourhoods of p in the Satake

topology is given by those subsets U ⊂ X+
BB

such that
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• Γp · U = U , where Γp = {γ ∈ Γ : γ · p = p}; and

• γ · U ∩ Ω is a neighbourhood for γ · x in Ω, where Ω is the closure of Ω in X̌.

For example, for X+ = h+ the upper half-plane, the choice of minimal Q-parabolic corresponding to the
cusp ∞, and for the choice of Γ := SL2(Z), the open sets U satisfying the above two conditions are precisely
given by

U = {∞} ∪ {z ∈ h : Im(z) > C}

for C > 0.
The Satake topology is characterised as follows.

Theorem 3.3 ([Ash+10, Theorem III.6.1]). The Satake topology on X+
BB

is the unique topology satisfying
the following properties:

1. it induces the natural topology on X+ and on the closures S of any Siegel set S, where the closure is
taken in X̌;

2. the group G(Q) acts continuously on X+
BB

;

3. for any Γ an arithmetic subgroup of Gad(Q), if p, p′ ∈ X+
BB

are not in the same Γ-orbit, then there exist
neighbourhoods U of p and U ′ of p′ such that (Γ · U) ∩ U ′ = ∅;

4. for any Γ an arithmetic subgroup of Gad(Q) and for any p ∈ X+, there exists a fundamental set of
neighbourhoods U of p such that, for all U ∈ U , we have γ ·U = U if γ ·p = p and γ ·U ∩U = ∅ if γ ·x ̸= x.

Remark 3.4. Essentially, conditions 2, 3 and 4 guarantee that the quotient Γ\X+
BB

is a well-defined topological
manifold, for any arithmetic subgroup Γ ⊂ Gad(Q). Condition 1 can be viewed as some sort of minimality

condition, i.e. we want to make sure that the topology on X+
BB

is as close to the subspace topology induced
from X̌.

Definition. For Γ an arithmetic subgroup of Gad(Q), The Baily-Borel compactification of Γ\X+ is Γ\X+
BB

.

The Baily-Borel compactification enjoys the following properties:

• Γ\X+
BB

is a compact Hausdorff space containing Γ\X+ as an open dense subset. It is a finite union of
subspaces of the form ΓF \F for F a rational boundary component, where ΓF := Γ ∩ PF (Q).

• The closure of ΓF \F in Γ\X+
BB

is the union of ΓF \F and of subspaces ΓF ′\F ′, of strictly smaller
dimension.

• The image of F under the quotient map X+
BB → Γ\X+

BB
is precisely ΓF \F .

• For any rational boundary component F ⊂ X+
BB

, the closure F in X+
BB

is precisely the Baily-Borel

compactification F
BB

of F .

• Γ\X+
BB

is a complex projective algebraic variety for all arithmetic subgroups Γ (using embedding via
enough automorphic forms).

Remark 3.5. [Gor05, Section 2.5] gives an explicit computation for the Baily-Borel compactification X+
BB

for
the group Gad = Sp2n and for X+ the Siegel upper half space. This is fairly illuminating.

3.3 Combinatorial Data

Let V denote a Q-vector space.

Definition. A rational polyhedral cone (rpc) π ⊂ VR is a closed subset of VR of the form

{x ∈ VR : ℓi(x) ≥ 0 ∀1 ≤ i ≤ k}

for linear functionals ℓi ∈ V ∗, or equivalently, of the form{
k∑

i=1

λiyi ∈ V : λi ≥ 0

}
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for some finite set yi ∈ V .
An rpc is pointed if it does not contain any non-zero linear subspace of VR.
If an rpc π spans VR and so has non-empty interior, the interior of π is called an open rpc.
The dual π̌ of an rpc π is

π̌ := {λ ∈ V ∗
R : λ(v) ≥ 0 ∀v ∈ π}

The dual of an rpc in VR is an rpc in V ∗
R .

Suppose the dual rpc π̌ is generated by λ1, ..., λr, Then for any I ⊂ [1, b] the subset

πI := {v ∈ π : λi(v) = 0 ∀i ∈ I}

is a face of π.
If an rpc π has non-empty interior and |I| = r − 1, then πI = π ∩HI for some affine hyperplane. Such an

HI is called a supporting hyperplane.

Suppose T is a split torus over some field k. Let X∗(T ) = Hom(T,Gm,k) and

X∗(T ) = Hom(Gm,k, T ) = Hom(X∗(T ),Z).

These are free Z-modules of rank equal to the rank of T .

Definition. An equivariant (affine) embedding if T is an open embedding T ↪→ X into a (affine) k-variety X
such that the group action on T extends to an action of T on X.

Lemma 3.6 ([Ash+10, Section I.1]). Given a split torus T , there is a 1-1 correspondence between pointed rpcs
σ ⊂ X∗(T )R, and normal equivariant affine embeddings Tσ of T . This correspondence is given by

σ 7→ Tσ = Spec k[M ∩ σ̌].

If σ′ ⊂ σ is a face, then k[M ∩ σ̌′] is a quotient of k[M ∩ σ̌], and so Tσ′ is an open subvariety of Tσ.

Definition. A rational partial polyhedral decomposition (rppd) of X∗(T )R is a collection Σ of pointed rpcs such
that

• for every σ ∈ Σ, every face of σ lies in ΣF ;

• for σ, σ′ ∈ Σ, the cone σ ∩ σ′ is a common face of both σ and σ′.

A refinement of an rppd Σ is an rppd Σ′ such that

• every σ′ ∈ Σ′ is contained in some σ ∈ Σ, and

• every σ ∈ Σ can be written as a finite union

σ =
⋃

σ′∈Σ′,σ′⊂σ

σ′.

Suppose Σ is an rppd. Then, for every σ, σ′ ∈ Σ, the affine varieties Tσ and Tσ′ have the common open
subvariety Tσ∩σ′ , along which they may be glued. By glueing all the Tσ, we get a scheme TΣ with an action of
T . We thus have a T -equivariant embedding T ↪→ TΣ into a separated normal irreducible k-scheme locally of
finite type. For Σ′ a refinement of Σ, we have commutative triangles

T

TΣ′ TΣ

πΣ′,Σ

where the map πΣ′,Σ is proper.

Definition. Fix an open convex cone C ⊂ VR, and suppose there is a discrete group Γ ⊂ GL(VR) acting
transitively on C. A Γ-admissible rppd of C is an rppd Σ in VR such that

• for all σ ∈ Σ, we have σ ⊂ C;

• for every σ ∈ Σ and γ ∈ Γ, we have γ · σ ∈ Σ (so that Γ acts on the set Σ);

• there are only finitely many ΓF -orbits in Σ; and

• C =
⋃
σ∈Σ

σ ∩ C.
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3.4 Toroidal Compactifications - Classical

Remark 3.7. While the next section makes this one redundant, in order to construct canonical extensions of
automorphic vector bundles, it is easier to work over connected components than it is to work adelically. Thus,
this section has been included as well.

Fix a neat arithmetic group Γ ⊂ G(Q)+. We will now suppose throughout that F denotes a rational
boundary component. All the statements made here are proven in [Ash+10, Section III].

Recall there is a parabolic subgroup PF ⊂ G attached to a boundary component F of X+. For F rational,
this group is defined over Q. Let WF denote the unipotent radical of PF , and UF the centre of WF . Let MF

be a Levi factor of PF . Now, there exists a maximal Q-rational connected reductive subgroup Gℓ,F ⊂MF over
Q such that Gℓ,F acts trivially on F and (modulo a finite subgroup) acts faithfully by conjugation on UF .

Since WF is unipotent and UF is its centre, the exponential map yields a canonical identification (as algebraic
groups) of theQ-vector space uF with UF . On thisQ-vector space UF , there is a naturalQ-rational inner product
on UF . Inside UF (R) there is an open convex cone CF that is self-adjoint with respect to the inner product, on
which Gℓ,F (R)+ acts transitively, such that for a certain distinguished point ΩF ∈ UF (R), the stabiliser of ΩF

under the action of Gℓ,F (R)+ is Gℓ,F (R)+ ∩Ko. In other words, there is a (non-canonical) isomorphism

CF
∼=

Gℓ,F (R)+

Gℓ,F (R)+ ∩Ko
.

Let Γℓ,F := Γ ∩Gℓ,F (R)+; then it is known that Γℓ,F acts freely on CF .

Lemma 3.8. Suppose F, F ′ are boundary components with F ⊂ F ′.

• We have the following compatibilities:

WF ⊃WF ′ , Gℓ,F ⊃ Gℓ,F ′ , CF ′ = CF ∩ UF ′ ;

• CF ′ is a boundary component (as a cone) of CF . Fixing F , the map F ′ 7→ CF ′ is an order-reversing bijec-
tion between the set of boundary components F ′ of X+ with F ⊂ F ′, and the set of boundary components
of CF (as a cone). Moreover, under this bijection, rational boundary components F ′ of X+ with F ⊂ F ′

correspond precisely to rational boundary components of CF .

Definition. A Γ-admissible collection of polyhedra is the data of a Γℓ,F -admissible rppd ΣF of CF (in the
ambient vector space UF (R)) for each rational boundary component F , satisfying the following compatibility
conditions:

• if F ′ = γF with γ ∈ Γ, then
ΣF ′ = {γσ : σ ∈ ΣF },

via the natural isomorphism γ : CF → CF ′ ; and

• if F ⊂ F ′ then
ΣF ′ = {σ ∩ CF ′ : σ ∈ ΣF }.

These Γ-admissible collection of polyhedra are precisely the combinatorial data required to construct a
toroidal compactification. Suppose we fix a Γ-admissible collection of polyhedra Σ. Rather than constructing
the compactification (Γ\X+)torΣ (a construction of which is found in [Har89, Section 2]), let us describe the
toroidal compactification via its properties. This requires a little more notation.

Let P ′
F be the centralizer of UF in PF , and let Γ′

F = Γ ∩ P ′(Q). By an abuse of notation, we write
UF (Z) = UF (Q) ∩ Γ; this is a lattice in the vector space UF (R). Since UF ⊂ P ′, we have UF (Z) ⊂ Γ′

F . Now,
there is a certain open set X+

F ⊂ X̌ of X+ satisfying:

1. X+
F
∼= UF (C)× Cg × F , for some g ≥ 0;

2. X+
F is equipped with an action of Γ′

F extending the action of Γ′
F on X+; and

3. there is a certain fibration Γ′
F \X

+
F

π2−→ AF
π1−→MF such that

• MF
∼= ΓF \F for some arithmetic group ΓF (in particular, MF is a quasi-projective variety),

• AF is an abelian scheme over MF with structure map π1,

• π2 : Γ′
F \X

+
F → AF is a principal homogeneous space with fibres the torus TF := UF (Z)\UF (C), and

• Γ′
F \X

+
F has the structure of an algebraic variety, with respect to which π2 is a morphism of varieties.
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Now, suppose given a boundary component F and a pointed rpc σ ⊂ UF (R). One easily checks that
X∗(TF ) ∼= UF (Z) and X∗(TF )R ∼= UF (R), and so we have the equivariant embedding TF ↪→ TF,σ of the torus
TF corresponding to the pointed rpc σ. Consider the contracted product

(Γ′
F \X+

F )σ := (Γ′
F \X+

F )×TF TF,σ,

and let X+
F,σ be the interior of the closure in (Γ′

F \X
+
F )σ of Γ′

F \X+. Similarly, let X+1
F,σ be the interior of the

closure of UF (Z)\X+(F ) in the contracted product

(UF (Z)\X+
F )×TF TF,σ.

Since UF (Z) ⊂ Γ′
F , we have a quotient map X+1

F,σ → X+
F,σ.

Theorem 3.9. We assume the notation and setup as above.

1. For any Γ-admissible collection of polyhedra Σ, there exists a unique Hausdorff analytic variety Γ\X+
Σ

containing Γ\X+ as an open dense subset such that:

• for every rational boundary component F of X+, there are open analytic morphisms (ρF,σ)σ∈ΣF

making

UF (Z)\X+ X+1
F,σ

Γ\X+ Γ\X+
Σ

ρF,σ

commute;

• every point of Γ\X+
Σ is in the image of one of the maps ρF .

This space Γ\X+
Σ is a compact algebraic space.

2. The natural map Γ′
F \X+ → Γ\X+ extends to a local analytic isomorphism ϕF,σ : X+

F,σ → Γ\X+
Σ.

Moreover, an open cover of Γ\X+
tor

Σ is given by

{X+
F,σ : σ ∈ ΣF , F a rational boundary component of X+}.

3. There exists a natural morphism Γ\X+
Σ → Γ\X+

BB
inducing the identity morphism on the dense open

subset Γ\X+.

4. Suppose Γ is neat. Then, for every Γ-admissible collection Σ of polyhedra, there exists a subdivision Σ′

such that the morphism Γ\X+
Σ′ → Γ\X+

Σ, induced by the identity morphism on Γ\X+, is projective

and Γ\X+
Σ′ is smooth (in fact, is a blow-up).

Definition. The toroidal compactification Γ\X+
Σ is said to be SNC if it is smooth and Γ\X+

Σ \ (Γ\X+) is
a divisor with normal crossings.

Lemma 3.10. The compactification Γ\X+
Σ is SNC if and only if for all rational boundary components F and

all σ ∈ ΣF , the semigroup σ ∩ UF (Z) is generated by a subset of a basis for the free abelian group UF (Z).

It is a fact that every Γ-admissible collection of polyhedra admits a refinement such that the corresponding
toroidal compactification is SNC. It is also a fact that every Γ-admissible collection of polyhedra Σ admits a
refinement Σ′ such that the map Γ\X+

Σ′ → Γ\X+
Σ is projective. There also exists a Σ such that Γ\X+

Σ is a
projective SNC toroidal compactification.

3.5 Constructing Toroidal Compactifications Adelically

This is Sections 2.5-2.7 of [Har89].
Choose a Q-rational minimal parabolic subgroup B of G. Let Pi (1 ≤ i ≤ r) be the set of maximal Q-

parabolic subgroups of G containing B. Let Ui be the centre of the unipotent radical of Pi, and let Ci ⊂ Ui(R)
be the corresponding Pi(R)+-stable self-adjoint convex cone. LetK be a neat open compact subgroup of G(A∞

Q ).

For each i, choose a collection of rational polyhedral cones σ
(i)
α,g ⊂ Ci for α ∈ Ξi and g ∈ G(A∞

Q ), indexed
by some set Ξi and G(A∞

Q ). We require the following compatibility properties:
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1. for each 1 ≤ i ≤ r and each g ∈ G(A∞
Q ), {σ(i)

α,g}α∈Ξi is a rppd;

2. for any 1 ≤ i ≤ r, any α ∈ Ξi and any γ ∈ Pi(R)+, there exists β ∈ Ξi such that γ · σ(i)
α,g = σ

(i)
β,γg;

3. {σ(i)
α,gk}α,g = {σ(i)

α,g}α,g for all i and all k ∈ K;

4. for each i, the double orbit space Pi(R)+\{σ(i)
α,g}/K is finite;

5. Ci =
⋃

α σ
(i)
α,g ∩ Ci for any g ∈ G(A∞

Q ) and any 1 ≤ i ≤ r;

6. if Fi is a boundary component of Fj , then for all g ∈ G(A∞
Q ),

{σ(j)
α,g : α ∈ Ξj} = {σ(i)

α,g ∩ Cj : α ∈ Ξi},

with respect to a certain natural identification of Cj with Ci ∩ Uj(R).

For each i, set

∆i =
{
σ(i)
α,g × {g} : α ∈ Ξi, g ∈ G(A∞

Q )
}
⊂ Ci ×G(A∞

Q ),

and set
Σi := Ind

G(Q)+
Pi(R)+∆i.

By definition, this is the set

Ind
G(Q)+
Pi(R)+∆i := (G(Q)+ ×∆i)/Pi(R)+

equipped with the obvious G(Q)+ action, where with Pi(R)+ acting on G(Q)+ ×∆i by the formula

p(γ, σ(i)
α,g, g) =

(
γp−1, p(σ(i)

α,g), pg
)
.

Let Σ =
⊔r

i=1 Σi.

Definition. We say that a Σ constructed as above is a K-admissible collection of polyhedra.

All of this combinatorial data is required to construct a toroidal compactification ShK
Σ
of ShK .

Fix a connected component X+ of X, so that G(R)+ can be thought of as the stabiliser of X+ under the
action of G(R) on π0(X). Let Fi be the boundary component of X+ corresponding to the parabolic Pi, and let
X+

i = X+
Fi

be as defined in the previous section. Set

Ai := Ui(Q)\G(A∞
Q )/K,

Bi = Ui(Q)\X+
i ×G(A∞

Q )/K,

Ti := Ui(Q)\Ui(C)×G(A∞
Q )/K.

It is easy to see that Ti is a group variety over Ai all of whose fibres are tori. Let

Ti Ti,∆i

Ai

be the torus embedding, where for any g ∈ Ai (with g ∈ G(A∞
Q )), the fibre of the map Ti ↪→ Ti,∆i is precisely

the usual torus embedding
(Ti)g ↪→

(
(Ti)g

)
{σ(i)

α,g}
.

As before, we take Bi,∆i
to be the interior of the closure of Ui(Q)\X+ ×G(A∞

Q )/K in the contracted product

Bi ×Ti Ti,∆i
.

If Fi is a boundary component of Fj , then there is a canonical étale map πji : Bj,∆j
→ Bi,∆i

. There is also an
action of Pi(R)+ on Bi,∆i

, and so we can define

Bi,Σi
= Ind

G(Q)+
Pi(R)+Bi,∆i

.
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Finally, set

S̃h
Σ

K =

r⊔
i=1

Bi,Σi
.

We define an equivalence relation on S̃h
Σ

K : for xi ∈ Bi,Σi and xj ∈ Bj,Σj , we say that xi ∼ xj if and only if
there exists k ∈ {1, ..., r} and x ∈ Bk,∆k

such that Fi and Fj are both boundary components of Fk, and there
exist γi, γj ∈ G(Q)+ such that

γixi = πki(x) and γjxj = πkj(x).

The quotient of S̃h
Σ

K under the above equivalence relation will be denoted by ShK
Σ
.

Proposition 3.11. ShK
Σ
is the disjoint union of the toroidal compactifications of each of the connected com-

ponents Γi\X+, where Γi = giKg−1
i ∩G(Q)+ and {gi} is a set of coset representatives of G(Q)+\G(A∞

Q )/K.

Thus, we can define ShK
Σ
to be the toroidal compactification of the Shimura variety ShK .

Remark 3.12. Of course, the whole construction above is moot if we cannot find such combinatorial data Σ.

Harris constructs one such Σ in [Har89, 2.5.7(a)]. It turns out that this special Σ makes ShK
Σ

a projective
variety.

Now, suppose Σ′ be a refinement of Σ (i.e. we take refinements of the rppds {σ(i)
α,g} and continue with the

above setup). Then, the induced map

πΣ′,Σ : ShK
Σ′

→ ShK
Σ

is a proper birational morphism.

Lemma 3.13. Suppose K ′ is an open subgroup of K, and Σ is a K-admissible collection of polyhedra. Then Σ is
automatically K ′-admissible as well, and the canonical projection ShK′ → ShK extends to a natural morphism

ShK′
Σ → ShK

Σ
.

If K ′ is moreover a normal subgroup of K, then K acts naturally on ShK′
Σ
and there is a natural isomor-

phism

ShK′
Σ
/K ∼= ShK

Σ
.

Let us now briefly discuss models of the toroidal compactifications over the reflex field. For each standard
maximal Q-parabolic P ⊂ G, let P ′′ be the maximal subgroup with the property that the homomorphism

Ad|P ′′ : P ′′ → GL(Lie(Ui))

factors through a Q-morphism ν : P ′′ → Gm,Q, with Gm,Q acting as scalars in GL. In particular, one checks
that the centraliser P ′ of U in P satisfies

1→ P ′ → P ′′ → Gm,Q → 1.

Set Li(g) := Ui(Q) ∩ gKg−1.

Definition. Let Σ be a K-admissible collection of polyhedra. Say Σ is projective (in the sense of Tai) if for
each i there exists a continuous function

ϕi : ∆i → R

such that

• ϕi is piecewise linear in the variable Ci;

• ϕi(x, g) > 0 for all x ̸= 0;

• ϕi is linear on the image of {σ(i)α,g} for all α;

• the {σ(i)α,g} are the maximal polyhedral cones in ∆i on which ϕi is linear;

• ϕi(Li(g) ∩ Ci, g) ⊂ Z for all g ∈ G(A∞
Q ).

Definition. A projective K-admissible collection of polyhedra Σ is equivariant if

ϕi(x, pg) = ∥ν(p)∥−1ϕi(x, g)

for all p ∈ P ′′
i (A∞

Q ) and all i, g, x. Here, ∥.∥ is the adele norm on A∞
Q .
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Proposition 3.14 ([Har89, Proposition 2.8]). If Σ is projective and equivariant, then the complex variety ShK
Σ

and the divisor ShK
Σ \ ShK are both defined over the reflex field of the Shimura datum (G,X).

Remark 3.15. This result is proven by first noting that ShK
Σ
is the normalization of a blow up along certain

ideal sheaves of the Baily-Borel compactification. These ideal sheaves are a priori defined over C. Harris shows
that these ideal sheaves are actually defined over the reflex field. Since the Baily-Borel compactification is
defined over the reflex field, it then follows that the toroidal compactification is as well.

3.6 Canonical Extensions of Automorphic Vector Bundles

It is easiest to define canonical extensions of automorphic vector bundles over the connected components Γ\X+

of ShK (where Γ = G(Q)+ ∩ gKg−1 for some g ∈ G(A∞
Q )). We use the notation defined in Section 3.4.

Let Σ be a Γ-admissible collection of polyhedra. Suppose ρ is a GC-representation with corresponding
flat vector bundle V on ShK (and by restriction, a flat bundle on Γ\X+). Let V̌ be the corresponding GC
representation on the compact dual space X̌. Let

jΣ : Γ\X+ ↪→ Γ\X+
Σ

be the canonical open embedding. Recall the open subset X+
F := UF (C) ·X+ ⊂ X̌. Recall also the fibration

Γ′
F \X+

F
π2−→ AF

π1−→MF

attached to each cone σ ∈ ΣF .
It is a fact that for every rational boundary component F , the bundle V̌|X+

F
has a basis of UF (C)-invariant

holomorphic sections. This implies that the vector bundle

VF := Γ′
F \V̌|X+

F

over Γ′
F \X

+
F satisfies

VF ∼= π∗
2(VA

F )

for some vector bundle VA
F on AF . Let π2,σ : X+

F,σ → AF be the canonical map induced by π2 whose fibres are
isomorphic to TFσ, and set

VF,σ = π∗
2,σ(VA

F ).

Recall the open morphisms ϕF,σ : X+
F,σ → Γ\X+

Σ given in Theorem 3.9(2).

Definition. A canonical extension of V|Γ\X+ to Γ\X+
Σ is a subsheaf VΣ of jΣ,∗(V) over Γ\X+

Σ such that
there exist isomorphisms

fσ : ϕ∗
F,σ(VΣ)

∼−→ VF,σ

for all σ ∈ Σ, satisfying obvious compatibility conditions between fσ, fσ′ for σ, σ′ ∈ ΣF .

Definition. A canonical extension of the vector bundle V on ShK is a vector bundle VΣ on ShK
Σ

whose

restriction to every connected component Γ\X+
Σ of ShK

Σ
is a canonical extension of V|Γ\X+ .

Obviously, a canonical extension if it exists is determined uniquely up to unique isomorphism. It is also a
fact that the canonical extension VΣ, if it exists, is an algebraic bundle.

Theorem 3.16 ([Har89, Theorem 4.2]). Assume that K ⊂ G(A∞
Q ) is neat, and let Σ be a K-admissible

collection of polyhedra with corresponding toroidal compactification ShK
Σ
.

1. Any automorphic vector bundle V over ShK has a canonical extension VΣ to ShK
Σ
.

2. The functor V 7→ VΣ is exact and commutes with tensor products and the Hom functors.

3. If Σ is projective, then the functor V 7→ VΣ preserves fields of definitions.

Example 3.17. Consider the structure sheaf OX̌ on X̌. This is GC-equivariant, and so we get the automorphic
bundles OShK

. Then, Mumford showed that

(OShK
)Σ ∼= OShK

Σ .
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Example 3.18. Suppose ShK
Σ
is SNC. Then, for any r > 0, we have

(Ωr
ShK

)Σ ∼= Ωr

ShK
Σ(logZ),

where Z := ShK
Σ \ ShK and Ω•

ShK
Σ(logZ) is the logarithmic de Rham complex of Deligne.

The existence of canonical extensions is proven as follows. Of course, it suffices to prove existence for the
connected component Γ\X+. Suppose that h ∈ X+ and Ph the corresponding parabolic. Every automorphic
vector bundle corresponds to a finite dimensional representation of Ph. It is a fact that this representation is a
subquotient of the restriction to Ph of a finite dimensional representation of G. It thus suffices to work with flat
automorphic bundles. Recall also that every Γ-admissible collection of polyhedra Σ admits a finite refinement
such that the corresponding toroidal compactification is SNC. Harris shows that the canonical extension on a

SNC compactification ShK
Σ′

pushes forward to the canonical extension on ShK
Σ
.

Hence, we may suppose that the compactification Γ\X+
Σ is SNC and that V̌ ∼= V ×X̌ where ρ : G→ GL(V )

is a representation and G acts diagonally on V̌. As usual, the corresponding bundle V on Γ\X+ is flat. Since
K is neat, we have π1(Γ\X+) = Γ, and under the Riemann-Hilbert correspondence this bundle V corresponds
to the monodromy representation ρ|Γ : π1(Γ\X+) → GL(V ). Now, the monodromy representation of V along
the divisor Z = Γ\X+

Σ \ Γ\X+ is unipotent. A theorem of Deligne then provides a unique extension of V to

a flat bundle Vcan on Γ\X+
Σ with regular singularities along Z. By studying this bundle Vcan on each of the

open sets X+
F,σ, Harris shows that this bundle satisfies the definition of canonical extension given above.

Proposition 3.19. Suppose Σ is a K-admissible collection of polyhedra and that V is an automorphic vector
bundle on ShK . If Σ′ is any refinement of Σ, then

πΣ′,Σ,∗VΣ′ ∼= VΣ and π∗
Σ′,ΣVΣ ∼= VΣ′ .

Moreover, these isomorphisms are adjoint to each other. We also have natural isomorphisms

H∗(ShK
Σ
,VΣ) ∼= H∗(ShK

Σ′

,VΣ′).

As one would expect, all of these isomorphisms are defined over a field E if the original automorphic vector
bundle on ShK was defined over E and if Σ and Σ′ are projective and equivariant.

3.7 Hecke Action on Canonical Extensions

Suppose K ′ is an open neat subgroup of the neat compact open K ⊂ G(A∞
Q ). By Lemma 3.13, we have a map

tK′,K : ShK′
Σ′

→ ShK
Σ

for anyK-admissible collection of polyhedra Σ (with Σ′ the correspondingK ′-admissible collection of polyhedra.
Suppose the G-homogeneous bundle V̌ on X̌ induces the automorphic vector bundles VK and VK′ on ShK and
ShK′ respectively.

Proposition 3.20. In the setup above, we have a canonical isomorphism

t∗K′,KVK,Σ
∼= VK′,Σ′

Now suppose h ∈ G(A∞
Q ); then Kh := h−1Kh is also neat. Let ∆i,Σi, and Σ be as in Section 3.5. If we

replace ∆i by

∆h
i := (σ

(i)
α,gh, gh)

for all i. We then get the Kg-admissible collection of polyhedra Σg, and so we have the toroidal compactification

ShKh

Σh

of ShKh . Suppose also that the G-homogeneous bundle V̌ yields the automorphic bundles VK on ShK

and VKh on ShKh .

Proposition 3.21. The natural isomorphism ShKh
∼= ShK extends to an isomorphism

th : ShKh

Σh ∼= ShK
Σ
.

Moreover, we have a canonical isomorphism

t∗hVK,Σ
∼= VKh,Σh .

As usual, in both of these propositions, if everything in sight is defined over a subfield E of C and if the
admissible collections of polyhedra are projective and equivariant, then the above natural isomorphisms are also
defined over E.

Combining the above two propositions, we thus get Hecke actions on cohomology. We will revisit this when
we look at coherent cohomology.

21



4 Cohomology of Automorphic Vector Bundles

We recall the notation previously used. Let (G,X) be a Shimura datum. Write g = Lie(G). Fix a point o ∈ X;
then the stabiliser of o in G(R) is AGKo where Ko is a maximal compact subgroup. Let k = Lie(Ko); then we
have the Hodge decomposition

gC = p+o ⊕ p−o ⊕ (ko,C ⊕ aG).

Let Po be the parabolic subgroup of GC with Lie algebra po := ko,C⊕ aG⊕ p−o , and set X̌ to be the (projective)
flag variety of parabolic subgroups of G conjugate to Po. The Borel embedding is thus X ↪→ X̌(C). Let Mo

denote the Levi factor of Po; then Mo is the stabiliser of o ∈ X under the G action, and Mo(R) = AGKo.
Throughout, for V a flat bundle we denote by V∇ the corresponding local system under the Riemann-Hilbert

correspondence.
The survey [Har90] is an excellent reference.

4.1 Relative Lie Algebra Cohomology

In order to prevent confusion with previous notation, consider a Lie group H with Lie algebra h and maximal
compact C. Let c be the Lie subalgebra of h corresponding to C. Suppose W is a (h, C)-module. For a given
q ≥ 0, set Cq(h, C;W ) to be the space of linear functions f :

∧q
(h/c)→W satisfying

q∑
i=1

f(x1, ..., xi−1, [x, xi], xi+1, ..., xq) = x · f(x1, ..., xq)

for all x ∈ c and x1, ..., xq ∈ h, and satisfying

q∑
i=1

f(x1, ..., xi−1, Adh(xi), xi+1, ..., xq) = h · f(x1, ..., xq)

for all h ∈ C and all x1, ..., xq ∈ h. Strictly speaking, the first condition is a special case of the second condition
via the exponential map, but we write both conditions separately for emphasis. We have natural differential
maps

d : Cq(h, C;W )→ Cq+1(h, C;W )

given by

(df)(x0, ..., xq) :=

q∑
i=1

(−1)ixi · f(x0, ..., x̂i, ..., xq) +
∑

1≤i<j≤q

(−1)i+jf([xi, xj ], x0, ..., x̂i, ..., x̂j , ..., xq).

The cohomology of this complex C•(h, C;W ) is denoted by H∗(h, C;W ).

4.2 Cohomology of Automorphic Local Systems as (g, Ko)-cohomology

We follow the exposition of [Su18]. The survey article [Har90] is also a good reference.

Remark 4.1. The computation carried out in [Su18] actually computes the cohomology for the local system
(under the Riemann-Hilbert correspondence), not the flat bundle! Thus, even though we follow the computation
of [Su18], we correct this mistake.

Fix a level K, and let V be a complex representation of G(C), so that we have the flat bundle ṼK on ShK .
Consider the Dolbeault complex A0,• whose differential maps are ∂. It is a general fact that the cohomology
of local systems is computed using a de Rham complex, i.e. Ṽ ∇

K ⊗C A0,• can be used to compute the sheaf
cohomology H∗(ShK , ṼK). We thus try to compute the cohomology of the complex Γ(ShK , Ṽ ∇

K ⊗C A0,•). Let
Ωq denote the sheaf of smooth q forms, so that

Ωq =
⊕

i+j=q,i,j≥0

Ai,j .

First, we know that Ṽ ∇
K ⊗C Ω0 (where recall Ω0 = C∞) is the sheaf

U 7→
(
C∞(π−1

K (U))⊗ V
)Ko

,

where πK is the projection

πK : G(Q)\G(AQ)/AGK = G(Q)\
(
G(R)/AG ×G(A∞

Q )/K
)
↠ ShK(G,X).
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Suppose U ⊂ ShK is open. Let us define a map

ΦU : Ṽ ∇
K ⊗C Ωq(U)→ Hom

(
q∧
(gC/aG), C

∞(π−1
K (U))⊗ V

)

as follows. Suppose ω ∈ Ṽ ∇
K ⊗C Ωq(U). Suppose v1, ..., vq ∈ gC/aG; then via left-translation ℓp we can view

v1, ..., vq as elements of Tpπ
−1
K (U) for all p ∈ π−1

K (U). We then get the element

ωπKp (πK∗ℓp,∗v1, ..., πK∗ℓp,∗vq) ∈ V.

Thus, we have a smooth map

π−1
K (U)→ V, p 7→ ωπKp (πK∗ℓp,∗v1, ..., πK∗ℓp,∗vq) ,

and so v1, ..., vq have defined an element of C∞(π−1
K (U))⊗V . This map is obviously linear, and so to ω we have

assigned an element ΦUω ∈ Hom
(∧q

(gC/aG), C
∞(π−1

K (U))⊗ V
)
. We have thus defined the map ΦU . If some

vj ∈ ko = mo/aG, then πK∗vj = 0 since πK is the quotient by Ko map. Thus, ΦUω(v1, ..., vq) = 0 if any one of
the vi ∈ mo/aG. Hence, ΦU actually defines a map

ΦU : Ṽ ∇
K ⊗C Ωq(U)→ Hom

(
q∧
(gC/mo), C

∞(π−1
K (U))⊗ V

)
.

Suppose k ∈ Ko and p ∈ π−1
K (U). Since πK is the quotient by Ko map, it follows that for any v ∈ g/aG we have

πK∗ℓp,∗v = πK∗ℓpk−1,∗Ad(k) · v,

and so in fact the map Φ is Ko-equivariant. Thus, we have a map

ΦU : Ṽ ∇
K ⊗C Ωq(U)→ Cq(gC/aG,Ko;C

∞(π−1
K (U))⊗ V ).

Since πK is a principal Ko-bundle, it follows that ΦU actually induces an isomorphism. Thus, if C∞(ShK ,−)
denotes the functor of global smooth sections, we get the following result, where for simplicity, set

[G] := G(Q)\G(AQ)/AG.

Proposition 4.2. With notation as above, we have

RqC∞(ShK , Ṽ ∇
K ) ∼= Hq

(
gC/aG,Ko;C

∞([G]/K
)
Ko−fin

⊗ V
)
.

Let us now consider the functor Γ(ShK ,−) of holomorphic global sections. Since, by definition, the complex
structure on ShK is induced by the decomposition gC/mo

∼= p+o ⊕ p−o , and since p−o = p1o/ko, it follows that ΦU

induces an isomorphism
Ṽ ∇ ⊗C A0,q(U) ∼= Cq

(
p1o,Ko;C

∞(π−1(U))⊗ V
)
.

We thus have the following result.

Proposition 4.3. With notation as above, we have

Hq(ShK , Ṽ ∇
K ) ∼= Hq

(
p1o,Ko;C

∞([G]/K
)
Ko−fin

⊗ V
)
.

Taking limits, we then have the following.

Proposition 4.4. There are G(A∞
Q )-equivariant isomorphism

RqC∞(Sh, Ṽ ∇) ∼= Hq
(
gC/aG,Ko;C

∞([G]
)
Ko−fin

⊗ V
)
,

Hq(Sh, Ṽ ∇) ∼= Hq
(
p1o,Ko;C

∞([G]
)
Ko−fin

⊗ V
)
,

where the right hand side has the G(A∞
Q ) action induced by its diagonal action on C∞([G])Ko−fin ⊗ V .

As a reminder, G(A∞
Q ) acts on V via projection to AG.
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4.3 The Matsushima-Murukami Formula

What is the point of computing the cohomology of (the associated local system of) automorphic vector bundles?
It turns out that the cohomology of automorphic vector bundles is intimitely connected with automorphic forms.
This is exemplified in the situation where Gder is anisotropic (i.e. has Q-rank 0), so that ShK are already
compact. In this case, the G(AQ)-module C∞([G]) is unitarizable. We compute RqC∞(Sh, Ṽ ) differently. This
is precisely the remarks made by Harris in the beginning of Section 1.3 of [Har90]. The reference [Nic20] is also
good.

Let us decompose C∞([G]) as a (g,Ko)×G(A∞
Q )-module. Suppose

C∞([G])Ko−fin
∼=

⊕
π∞,π∞

m(π∞ ⊗ π∞)Vπ∞ ⊗ Vπ∞ ,

where the direct sum runs over all irreducible unitarizable (g,Ko)-modules (π∞, Vπ∞) and all irreducible G(A∞
Q )-

modules (π∞, Vπ∞). The m(π∞⊗π∞) are non-negative integers denoting the multiplicity of each representation.
Since C∞([G]) is an admissible representation, these multiplicities are finite. This decomposition should then
yield a decomposition of RqC∞(Sh, Ṽ ) indexed by automorphic representations.

This is the content of the Matsushima-Murukami theorem.

Theorem 4.5. Let (G,X) be as above, so that the corresponding Shimura variety Sh is compact. Let ρ be
any irreducible finite-dimensional representation of G(C), with corresponding flat automorphic vector bundle
Vρ. Then, we have

RqC∞(Sh,V∇
ρ ) ∼=

⊕
π∞,π∞

m(π∞ ⊗ π∞)π∞ ⊗Hq(g,Ko, π∞ ⊗ ρ)

as admissible G(A∞
Q )-representations, where the direct sum runs over all irreducible unitarizable (g,Ko)-modules

(π∞, Vπ∞) and all irreducible G(A∞
Q )-modules (π∞, Vπ∞). The integers m(π∞ ⊗ π∞) is the multiplicity of

π∞ ⊗ π∞ occurring in the (g,Ko)×G(A∞
Q )-module

L2([G])[ω−1
∞ ],

where ω∞ : ZG(C)→ C× is the central character of ρ.

Thus, computing RqC∞(Sh,Vρ) gives information about automorphic representations of a certain type.
For ShK not compact, the elements of the cohomology groups of Vρ need not be automorphic forms. The

reason is that the moderate growth conditions required in the definition of automorphic forms. This was rectified
via Borel’s theory on de Rham cohomology with growth conditions.

4.4 Cohomology with Compact Supports, and Poincaré duality

We require the general theory of de Rham cohomology with growth conditions. Let G0 := Gder(R)+, and let
g 7→ g̃ by the Cartan involution Ad(o(i)) on G0 with respect to the Ko. Set

∥g∥G0 := Trace
(
Ad(g̃−1g)

)
for each g ∈ G0.

Definition. Suppose V is a normed C-vector space.

• A function f ∈ C∞(AG\G(AQ), V ) is slowly increasing if f is a finite sum of eigenfunctions for ZG(AQ)
and if there exist m ≥ 0 and C > 0 such that

∥f(gγ)∥V < C∥g∥mG0

for all g ∈ G0 and all γ ∈ G(AQ).

• A function f ∈ C∞(AG\G(AQ), V ) is rapidly decreasing if f is a finite sum of eigenfunctions for ZG(AQ)
and if for all m ≥ 0 and all γ ∈ G(AQ) there exists Cγ,m > 0 such that

∥f(gγ)∥V < Cγ,m∥g∥mG0

for all g ∈ G0.
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For every K ⊂ G(A∞
Q ) compact open, let Csi,K(G) (resp. Crd,K(G)) denote the space of all C∞ functions

on [G]/K which, together with all their right U(g)-derivatives, are slowly increasing (resp. rapidly decreasing).
Set

Csi(G) = lim−→
K

Csi,K(G) and Crd(G) = lim−→
K

Crd,K(G)

Proposition 4.6. Let Vρ be a flat automorphic vector bundle corresponding to the G(C)-representation ρ.
There is a natural isomorphism

RqC∞(Sh,V∇
ρ ) ∼= Hq(g/aG,Ko, Csi(G)⊗ V )

of admissible G(A∞
Q )-modules.

Now, notice that the construction outlined in the previous section also carries over to cohomology with
compact supports. We thus get a similar result for H∗

c .

Proposition 4.7. Let Vρ be a flat automorphic vector bundle corresponding to the G(C)-representation ρ.
There is a natural isomorphism

H∗
c (Sh,V∇

ρ ) ∼= Hq(g/aG,Ko, Crd(G)⊗ V )

of admissible G(A∞
Q )-modules.

Here, for lack of better notation, we assume that H∗
c (Sh,Vρ) consists of smooth forms (with compact

support), as opposed to holomorphic forms.
The theory of holomorphic forms with compact support is not as clean. Let A(G) (resp. A0(G)) denote the

space of all automorphic forms (resp. automorphic cusp forms) on [G]. By definition, A(G) is the (g/aG,Ko)-
submodule of Ko-finite and Z(gC)-finite vectors in Csi. We now define an operator ∆V on C•(g/aG,Ko,A0(G)⊗
V ).

Now recall that X possesses a G(R)-invariant Hermitian metric which descends to a complete Hermitian
metric on ShK for any compact open K ⊂ G(A∞

Q ). Moreover, for V a finite-dimensional representation of Ko,
since Ko is compact we can endow V with a Ko-invariant Hermitian inner product. We can thus make any
automorphic flat bundle Vρ corresponding to a representation (V, ρ) of G(C) into a Hermitian vector bundle over
Sh. With respect to these metrics, the exterior derivative operator dV : Ω•(V )→ Ω•(V )[1] has a formal adjoint
d∗V : Ω•(V )[1]→ Ω•(V ). Let ∆V = dV ◦d∗V +d∗V ◦dV ; this is the usual Laplacian from complex geometry. By using
the map ΦShK

from the previous section, we thus have an induced map ∆V on C•(g/aG,Ko, C
∞([G]/K)⊗ V ).

Taking colimits over all K, we obtain an operator ∆V on C•(g/aG,Ko, C
∞([G])⊗ V ). Let Hp

cusp,V denote the
kernel of

∆V |Cp(g/aG,Ko,A0(G)⊗V ).

These are essentially the harmonic automorphic forms. Since cusp forms are rapidly decreasing we have a
natural map

H∗
cusp,V → H∗

c (Sh,V∇
ρ ).

Also, we have the usual canonical map

H∗
c (Sh,V∇

ρ )→ R∗C∞(Sh,V∇
ρ );

let the image of this map be denoted by H
∗
(Sh,V∇

ρ ). Composing the above two maps, we then get a map

H∗
cusp,V → H

∗
(Sh,V∇

ρ ).

Theorem 4.8. The above map
H∗

cusp,V → H
∗
(Sh,V∇

ρ )

is injective and G(A∞
Q )-equivariant.

Let us now discuss duality in the above cohomology. Of course, usual Poincaré duality yields a pairing

Hi(ShK ,V∇)⊗H2n−i
c (ShK , (V∗)∇)→ C

for any automorphic vector bundle V on ShK , where n is the complex dimension of the variety ShK . Here, V∗

is the automorphic vector bundle corresponding to the dual of the representation associated to V. By the above
comparison results, this yields a pairing on the relative Lie algebra cohomology. We construct this bilinear
pairing explicitly.
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Since the product of a slowly increasing function with a rapidly decreasing function is again rapidly decreas-
ing, we get a map of chain complexes

C•(g/aG,Ko, Csi,K(G)⊗ V )⊗ C•(g/aG,Ko, Crd,K(G)⊗ V ∗)→ C•(g/aG,Ko, Crd,K(G)).

In particular, upon taking cohomology, the above map yields a bilinear pairing

(−) ∪ (−) : Hp(g/aG,Ko, Csi,K(G)⊗ V )⊗H2n−p(g/aG,Ko, Crd,K(G)⊗ V ∗)→ H2n(g/aG,Ko, Crd,K(G)).

Define the following map:

T̃ r : C2n(g/aG,Ko, Crd,K)→ C;ω 7→ (2πi)−n

∫
G(Q)\G(AQ)/AGKoK

ω.

Proposition 4.9. Let notation be as above.

1. The map T̃ r factors through H2n(g/aG,Ko, Crd,K), and thus defines a surjective homomorphism

Tr : H2n
c (ShK ,C)→ C.

2. For each connected component Γ\X+, the restricting Tr defines an isomorphism

H2n
c (Γ\X+,C) ∼−−→

Tr
C.

3. The bilinear pairing

Hq(ShK ,V∇)⊗H2n−q
c (ShK , (V∗)∇)→ C, ω ⊗ ω′ 7→ Tr(ω ∪ ω′)

coincides, up to a non-zero scalar, with Poincaré duality.

4.5 Cohomology of Canonical Extensions

We follow [Har90, Section 2].

Recall that for any neat level K, any toroidal compactification ShK
Σ
of ShK , and any automorphic vector

bundle VK on ShK , we have the canonical extension of VK to ShK
Σ
. For this section, we denote this extension

by Vcan,Σ
K . Let ZΣ

K := ShK
Σ \ ShK and let I(ZΣ

K) ⊂ O
ShK

Σ be the ideal sheaf1 defining the divisor ZΣ
K .

Definition. The subcanonical extension Vsub,Σ
K is the vector bundle

Vsub,Σ
K := Vcan,Σ

K ⊗O
ShK

Σ I(ZΣ
K).

Clearly, Vsub,Σ
K is a subsheaf of Vcan,Σ

K , and we have an exact sequence

0→ Vsub,Σ
K → Vcan,Σ

K → Vcan,Σ
K |ZΣ

K
→ 0.

Example 4.10. Consider the automorphic vector bundle VK = Ωn
ShK

. Then, it is known that Vsub,Σ
K is the

dualising sheaf2 of the projective variety ShK
Σ
.

Recall that for any Σ′ a refinement of Σ, we get maps

πΣ′,Σ : ShK
Σ′

→ ShK
Σ

inducing the identity on ShK , such that

π∗
Σ′,ΣV

can,Σ
K

∼−→ Vcan,Σ′

K .

It follows easily that

π∗
Σ′,ΣV

sub,Σ
K

∼−→ Vsub,Σ′

K .

1see [Har13b, Section II.6], especially the discussion leading up to Proposition II.6.18
2see [Har13b, Section III.7]
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Similarly, the natural isomorphism

H∗(ShK
Σ
,Vcan,Σ

K )
∼−→ H∗(ShK

Σ′

,Vcan,Σ′

K )

yields a natural isomorphism

H∗(ShK
Σ
,Vsub,Σ

K )
∼−→ H∗(ShK

Σ′

,Vsub,Σ′

K ).

It is known that refinements form a cofiltered system. Hence the following definitions make sense

H∗
K(Vcan) := colimΣH

∗(ShK
Σ
,Vcan,Σ

K ),

H∗
K(Vsub) := colimΣH

∗(ShK
Σ
,Vsub,Σ

K ).

Definition. The coherent cohomology of the automorphic vector bundle VK on ShK is H∗
K(Vcan).

Now recall the Hecke actions on cohomology from Section 3.7: for any K ′ ⊂ gKg−1 and any K-admissible
collection of polyhedra Σ, we get a K ′ admissible collection of polyhedra Σ′, and the finite étale map

tg,K′,K : Sh′
K

Σ′

→ ShK
Σ

induces canonical isomorphisms
t∗g,K′,KV

can,Σ
K

∼−→ VΣ′

K′ .

Set
H̃∗(Vcan) := colimKH∗

K(Vcan) and H̃∗(Vsub) := colimKH∗
K(Vsub).

Remark 4.11. The phrase ‘coherent cohomology’ is quite often used to refer to the system of H∗
K(Vcan), or what

is essentially the same thing, the G(A∞
Q )-module H̃∗(Vcan).

As usual, these have a Hecke action on them. Since Vsub,Σ
K is a subsheaf of Vcan,Σ

K , we get an induced map

H̃∗(Vsub)→ H̃∗(Vcan).

Proposition 4.12. The groups H̃∗(Vcan) and H̃∗(Vsub) are naturally admissible graded G(A∞
Q )-modules, and

the natural map H̃∗(Vsub)→ H̃∗(Vcan) is G(A∞
Q )-equivariant.

Moreover if the bundle V on Sh is defined over a subfield E of C, then the G(A∞
Q ) action preserves the

E-structures on the above cohomology groups.

We can connect the cohomology of the canonical and subcanonical extensions to Lie algebra cohomology.
Recall the function spaces Csi(G) and Crd(G) on [G]. The proof of the following theorem is described in [Har90,
Section 2.4].

Theorem 4.13. Suppose (σ,W ) is a representation of Mo, with corresponding semisimple automorphic vector
bundle Vσ. Then, the following is a natural commutative diagram of admissible graded G(A∞

Q )-modules

H∗(po,Mo, Crd ⊗W ) H̃∗(Vsub
σ )

H∗(po,Mo, Csi ⊗W ) H̃∗(Vcan
σ )

∼

∼

where the horizontal arrows are isomorphisms.

Remark 4.14. For purpose of brevity, apart from mentioning the above theorem, we have skipped discussions on
the relationship between coherent cohomology of canonical extensions and Lie algebra cohomology with extra
growth conditions. The results are parallel to the ones in the previous section, though instead of working with
the cohomology of the Riemann-Hilbert local system attached to the automorphic vector bundle, one can work
with the cohomology of the automorphic vector bundles themselves. For instance, this is the subject of the
dissertation [Su18].

Remark 4.15. Faltings famous B-G-G spectral sequence computes the cohomology of certain local systems
attached to flat automorphic vector bundles via coherent cohomology of canonical extensions, thus connecting
the cohomology discussed in this section with the cohomology discussed in Section 4.2. This spectral sequence
involves a study of the root system attached to G. See [Har90, Section 4] for details.

Remark 4.16. Though we will not mention it here, one can also define spaces of harmonic cusp forms as subspaces
of cohomology. There is also a notion of Serre duality, where the duality pairing can be explicitly written down
in terms of functions in Lie algebra cohomology. This is Sections 2.5-2.7 of [Har90].
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A Miscellaneous Algebraic Geometry

A.1 Connections

A.2 Chern Classes and Intersection Theory
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