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Abstract

These are notes I made while learning about the theory of differential calculus on schemes, as well
as abelian and non-abelian Hodge theory. Emphasis is on developing the language, rather than gaining
intuition. All intuition should come from the analytic perspective of differential geometry and classical
Hodge theory.
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Notations, Conventions, and other Remarks

For the classical viewpoint of algebraic geometry in the field of differential geometry and Hodge theory, the
book [GH14] is the gold standard.

Throughout, all rings will be commutative rings with identity.

1 GAGA (and GAGA-esque results)

Serre’s GAGA, or Géometrie Algébrique et Géométrie Analytique, is one of the most important papers in
algebraic geometry. It proves general results comparing objects in analytic (and differential) geometry with
algebraic objects, thus paving the way for analytic methods to prove theorems in algebraic geometry.

The main reference is [Har77, Appendix B]. A lot of the properties/theorems about the analytification
functors will be taken from [GR02, Exposé XII]. However, [Nee07] is also quite good, especially since it assumes
very few prerequisites.

1.1 Analytification of C-schemes

Definition. A complex analytic variety is a locally ringed space (Z,OZ) where Z ⊂ Cn is the vanishing locus
of a finite set of holomorphic functions fi on Cn, and OZ = OCn/IZ where IZ is the ideal sheaf on Cn generated
by the fi. Here, OCn is the sheaf of all holomorphic functions on Cn.

A complex analytic space is a locally ringed space (X,OX) over C such that it is locally isomorphic as ringed
spaces to a complex analytic variety.

Morphisms of complex analytic spaces are just morphisms of locally ringed spaces over C.

Remark 1.1. Of course, every complex manifold is a complex-analytic space. In fact, an everywhere smooth
complex-analytic space is a complex manifold.

Suppose X is a scheme locally of finite type over C. We try to endow X(C), the set of complex points of
X, with a certain topology and with a ring structure so that it becomes a complex analytic space (Xan,OXan).
We do this by a local argument (we follow the argument given in [Nee07, Chapter 4-5]).

Suppose R is a finitely generated C-algebra; then there exists n ≥ 1 such that SpecR ↪→ An
C. On C-points,

we have a map of sets (SpecR)(C) ↪→ An
C(C) = Cn. We endow Cn with the usual Euclidean topology, and

endow (SpecR)(C) with the subspace topology. Since R is a finitely generated C-algebra and SpecR ↪→ An
C

is induced by a surjection C[x1, ..., xn] → R, it follows that SpecR is defined by the vanishing of certain
polynomials on Cn. We can pick only finitely many such polynomials as C[x1, ..., xn] is Noetherian. Since
polynomials are obviously holomorphic, there is an obvious complex analytic variety structure on (SpecR)(C).
Write (SpecR)an,O(SpecR)an for the complex analytic variety defined by SpecR.

One checks that this construction is independent of the closed immersion SpecR ↪→ An
C and is independent

of n itself. Since the set of C-points is the same as the set of closed points of SpecR, it follows that we have a
canonical map

λR : (SpecR)(C) ↪→ SpecR.

A priori, this is just a map of sets. However, one can check that this map is in fact continuous for the Zariski
topology on SpecR, and in fact defines a map of ringed spaces

λR : (SpecR)an → SpecR.

One also checks that this is functorial in R, i.e. if φ : SpecR → SpecS is a morphism of affine C-schemes of
finite type, then the induced map φ(C) : (SpecR)(C) → (SpecS)(C) of sets yields a natural map of ringed
spaces

φan : (SpecR)an → (SpecS)an.

For an arbitrary C-scheme X locally of finite type, we glue together the above complex analytic rings on
an affine open cover. One checks that this is independent of the chosen affine open cover, and so defines a
complex analytic space structure on X(C). We write Xan for this complex analytic space. The topology on
the underlying space X(C) of Xan turns out to be the finest topology such that for every open immersion
(SpecR) ↪→ X (for R finitely generated over C), the induced map (SpecR)an → Xan is continuous. Of course,
we have a canonical map λX : Xan → X of ringed spaces obtained by glueing.

Example 1.2. It is clear that (An
C)

an = Cn and (Pn
C)

an = Pn(C). Also, (SpecC)an is just a point with the sheaf
of constant functions.
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Theorem 1.3. The above construction yields a functor X 7→ Xan from the category of C-schemes locally of
finite type, to the category of complex analytic spaces. Viewing both of these categories as full subcategories of
the category of locally ringed spaces over C, with inclusion functors IC−sch and IC−as, the above functor (−)an

is equipped with a natural transformation

λ : IC−as ◦ (−)an ⇒ IC−sch.

These objects also satisfiy the following properties.

1. The functor (−)an preserves fibre products; in fact, it preserves all finite limits.

2. Suppose x ∈ X(C). The map of local rings λX,x : OX,x → OXan,x coming from the morphism λX : Xan →
X of ringed spaces induces an isomorphism on completions

λ̂X,x : ÔX,x → ÔXan,x.

3. The complex analytic space Xan represents the functor from the category of C-analytic spaces to Set given

Y 7→ Hom(Y,X)

where Hom(Y,X) is the set of all morphisms of ringed spaces from the complex analytic space Y to the
complex scheme X.

4. Consider the following properties P that may be enjoyed by C-schemes and by complex analytic spaces:

• regular

• normal

• reduced

• connected

• irreducible

• of dimension n

The C-scheme X satisfies property P if and only if the complex analytic space Xan satisfies property P.

5. Suppose f : X → Y is a morphism of C-schemes locally of finite type, with corresponding morphism
of complex analytic spaces fan : Xan → Y an. Then, f satisfies property P if and only if fan satisfies
property P, where P can be any of the following properties:

• flat

• unramified

• étale

• smooth

• normal

• reduced

• injective

• separated

• an isomorpism

• an open immersion

If f is further a morphism of finite type, then P can be any of the following as well:

• surjective

• dominant

• closed immersion

• immersion

• proper

• finite
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Remark 1.4. In the category of complex analytic spaces, a morphism being étale implies that the morphism is
a local isomorphism. This is however not true in the category of C-schemes.

Remark 1.5. We haven’t technically defined any of the above properties P in the analytic category. For most
of these properties, the definition carries over mutatis mutandis from the definition for schemes. For the rest,
we have the following definitions. Throughout, we let f : Y → Y ′ be a map of complex analytic spaces.

• f is proper if f−1(K) is compact for all K ⊂ Y ′ compact. In particular, being proper over C is the same
as being compact.

• f is finite if every fibre of f is a finite set.

• f is smooth if at any point x ∈ Y there exist open neighbourhoods U of x in Y and V of f(x) in Y ′ such
that f(U) ⊂ V , U and V are (isomorphic to) complex manifolds, and f |U : U → V is a smooth map of
complex manifolds.

1.2 Coherent Sheaves, and the Statement of GAGA

Definition. Let Y be a complex analytic space. An analytic coherent sheaf (of OY -modules) is a sheaf F of
OY -modules such that every p ∈ Y has a open neighbourhood U ⊂ Y on which there exists an exact sequence

Om
U → On

U → F|U → 0

such that, for any polydisc V ⊂ U , there is an exact sequence

Γ(V,Om
U ) → Γ(V,On

U ) → Γ(V,F|U ) → 0.

Analytic coherent sheaves behave as expected. For instance, the full subcategory Cohan(Y ) of coherent
sheaves on Y is closed under taking kernels, cokernels, internal Homs, etc.

Suppose now that F is a sheaf of OX -modules on a C-scheme X where X is locally of finite type. Recall
the canonical morphism of ringed spaces λX : Xan → X. We have a functor

Mod(OX) → Mod(OXan), F 7→ Fan := λ∗XF ,

where recall that a pull-back along a map of ringed spaces is a well-defined functor of sheaves on (locally) ringed
spaces. On stalks for instance, we have for any closed point x ∈ X(C),

Fan
x = Fx ⊗OX,x

OXan,x.

Example 1.6. Clearly, Oan
X = OXan .

Of course, by adjunction, we have a canonical map

λ∗X : F → λX,∗Fan.

Proposition 1.7. Suppose X is a scheme locally of finite type over C. The analytification functor Coh(X) →
Cohan(Xan),F 7→ Fan has the following properties.

1. Analytification is an exact, faithful (injective on Hom sets) and conservative functor of abelian categories.

2. Analytification commutes with all limits.

3. Analytification commutes with the usual constructions on Coh(−), eg. with direct sums, tensor products,
internal homs, etc.

4. Analytification sends coherent sheaves to coherent sheaves.

5. The map λ∗X(U) : Γ(U,F) → Γ(Uan,Fan) is injective. If U is affine and V ⊂ Uan is a polydisc, then the
composition

Γ(U,F)
λ∗
X(U)−−−−→ Γ(Uan,Fan) → Γ(V,Fan)

has dense image (in the Fréchet topology), and the image moreover generates Γ(V,Fan) as a modules over
Γ(V,Oan

X ).

6. Suppose G is a sheaf of Oan
X -modules on Xan, so that λX,∗G is a sheaf of OX-modules on X. Suppose F

is a coherent algebraic sheaf on X and α : F → λX,∗G is a OX-linear morphism on X. Then, there is a
unique map A : Fan → G of analytic OX-modules on Xan, such that α is the composite

F λ∗
X−−→ λX,∗Fan λX,∗A−−−−→ λX,∗G.
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With the analytification functors out of the way, we can now give the main statements of GAGA. We write
down the statements as generalized by Groethnedieck in [GR02, Exposé XII.4]. In order to set up the statement,
suppose f : X → Y is a morphism of C-schemes where X and Y are locally of finite type over C. We have a
commutative diagram

Xan X

Y an Y

ffan

λY

λX

Suppose also that F ∈ Mod(OX). Then, for any integer p ≥ 0, we have morphisms

Rpf∗F
i−→ Rpf∗(λX,∗Fan)

j−→ Rp(f ◦ λX)∗Fan = Rp(λY ◦ fan)∗Fan k−→ λY,∗(R
pfan∗ Fan).

Here, i is induced by the canonical morphism F → λX,∗F , and j and k are enduced by the edge morphisms from
the Leray spectral sequence associated to the composition of two derived functors (between derived categories).
We thus have a canonical morphism

θp : (Rpf∗F)an → Rpfan∗ (Fan)

of analytic OY an-modules on Y an.

Theorem 1.8 (Serre’s GAGA). Suppose X,Y, f,F , and θp are as above. Suppose additionally that f is proper
and F is coherent.

1. The above morphism θp is an isomorphism for all p ≥ 0.

2. The functor Coh(X) → Coh(Xan),F 7→ Fan, is an equivalence of categories.

The GAGA theorems yield a lot of powerful corollaries, some of which are as follows.

Corollary 1.8.1. For X a proper C-scheme and F ∈ Coh(X), we have a canonical isomorphism

H∗(X,F) ∼= H∗(Xan,Fan).

Corollary 1.8.2. The functor X 7→ Xan is a fully faithful functor from the category of proper C-schemes to
the category of (compact) complex-analytic spaces.

Corollary 1.8.3. Suppose X is a proper C-scheme. The functor X ′ 7→ (X ′)an induces an equivalence of
categories between the category of finite X-schemes and the category of finite complex analytic spaces over Xan.

Remark 1.9. Here, it should be noted that a finite map of complex analytic spaces need not be covering map.
A finite map X ′ → X of complex analytic spaces is a finite covering if every irreducible subspace of X ′ maps
onto an irreducible subspace of X. However the following

Corollary 1.9.1 (Generalised Riemann Existence Theorem). Suppose X is a C-scheme locally of finite type.
The functor X ′ 7→ (X ′)an induces an equivalence of categories between the category of finite étale coverings of
X and the category of finite étale coverings of Xan.

Corollary 1.9.2 (Chow’s Theorem). Suppose Y is a closed complex-analytic subspace of complex projective
space (the latter being viewed as a compact complex manifold). Then there exists a projective C-scheme X ↪→ Pn

C
such that Y ∼= Xan.

1.3 Kähler and Moishezon Manifolds

(This section is taken from [Har77, Appendix B])

Definition. A compact complex manifold X is said to be algebraic if X = Xan for some proper C-scheme X.

By Corollary 1.8.2, we know that if X is algebraic then the C-scheme X it defines is necessarily unique. We
now have an obvious question: which compact complex manifolds are algebraic? There is no clean answer if
we restrict ourselves to schemes. There are some obvious necessary conditions, which follow immediately (by
GAGA) from the corresponding property of schemes.

Proposition 1.10. Suppose X is a compact complex manifold of dimension n. Then the transcendence degree
of the field K(X ) of meromorphic functions on X over C is at most n. Moreover, equality holds if X is algebraic.
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Definition. A compact complex manifold is said to be Moishezon if the transcendence degree of the field K(X )
of meromorphic functions on X over C is equal to n.

Thus, being Moishezon is a necessary condition to being algebraic. We have another necessary condition,
which is a simple corollary of GAGA and Proposition 2.37.

Proposition 1.11. Suppose X is a compact complex manifold. Consider the Hodge-to-de Rham spectral se-
quence

Ep,q
1 = Hq(X ,Ωp) ⇒ Hp+q(X ,C),

where Ωp is the space of differential p-forms on X . If X is algebraic, then this spectral sequence degenerates on
the E1 page.

Moving on to sufficient conditions/characterizations, if we further restrict to projective complex manifolds
(i.e. a submanifold of Pn(C)), then we have better results. Recall that any complex manifold admits a Hermitian
metric, which is just a differential 2-form h with extra conditions. We have a differential (1, 1)-form ω := Im◦h,
often called the fundamental form (associated to h).

Definition. A Kähler manifold is a manifold such that the fundamental form ω is closed.

An excellent introduction to the theory of Kähler manifolds is [GH14, Chapter 0]. From loc. cit., we know
that every projective complex manifold is canonically a Kähler manifold. In this set up, we have the following
two results that give sufficient conditions.

Proposition 1.12. Suppose X is a complex manifold. Then, X is algebraic if and only if it is a compact Kähler
manifold with ω ∈ Im(H2(X ,Z) → H2(X ,C)).

Proposition 1.13. A Kähler Moishezon manifold is projective algebraic.

Of course, projective algebraic manifolds are both Kähler and Moishezon.
We also have a clean result if we look beyond schemes. It turns out that the analytification functor also

continues to work for algebraic spaces. We have the following theorem of Serre.

Theorem 1.14 (Serre). The category of smooth proper algebraic spaces over C is equivalent to the category of
compact complex Moishezon manifolds.
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2 De Rham Cohomology

The main references for stuff on the de Rham complex and de Rham cohomology is [Sta23, 0FK4]. For stuff
on connections, the best reference is [Kat70b]. The expository article [Ill02] is also really good, though its
main focus is the theory in characteristic p. The paper [Har75] also contains a lot of information about the
homological properties of the de Rham cohomology theory (such as the Künneth formula, Mayer-Vietoris, etc.);
however, Hartshorne works only in characteristic 0 in this paper.

Remark 2.1. A word of warning. Most references, including [Ill02] and [Sta23] usually consider arbitrary Y -
schemes and X, and restrict to looking at coherent sheaves on X. However, [Kat70b] considers quasi-coherent
sheaves on smooth Y -schemes X. I’ve tried to be as careful as I can with the assumptions while copying down
results, but it’s possible that I may have missed some things.

2.1 The de Rham Complex

See [Har77, Section II.8] for details.

Definition. Suppose A is a ring, B an A-algebra, and M a B-module. An A-derivation of B to M is an
A-linear map d : B →M such that

d(bb′) = bdb′ + b′db

and da = 0 for all a ∈ A.

Lemma-Definition. The module of relative differentials ΩB/A is the unique B-module ΩB/A equipped with
an A-derivation d : B → ΩB/A that is initial amongst all such B-modules, i.e. for any B-module M with
A-derivation d′ : B →M , there is a unique B-modules morphism f : ΩB/A →M such that d′ = f ◦ d.

One can construct the module of relative differentials in an obvious way. Properties of ΩB/A can be found
in [Har77, Section II.8].

Now, recall that if Z is a closed subscheme of X with closed immersion i : Z → X, the ideal sheaf IZ of Z
is the kernel of the canonical morphism

OX → i∗OZ .

It is a quasi-coherent sheaf of ideals of OX . Moreover, if X = SpecA and Z = SpecA/a, then IZ = ã is the
sheaf of ideals generated by the ideal a.

Now suppose f : X → Y is a morphism of schemes. We have the induced diagonal map ∆ : X → X×Y X. It
is a fact that ∆ is a locally closed immersion, i.e. ∆ identifies X with a closed subscheme of an open subscheme
W of X ×Y X. We can thus consider the ideal sheaf I of X in W , i.e.

I = ker(OX×Y X |W → i∗OX).

Definition. The sheaf of relative differentials of f : X → Y is the sheaf

ΩX/Y = ∆∗(I/I2).

The natural action of O∆(X) on I/I2 induces an action of OX on ΩX/Y .

It is known that ΩX/Y is a quasi-coherent sheaf of OX -modules on X. It is coherent if Y is locally Noetherian
and f a morphism locally of finite presentation.

Lemma 2.2. If X = SpecB and Y = SpecA so that the map f : X → Y is induced by a map A → B, then

ΩX/Y = Ω̃B/A.

Lemma 2.3. Suppose f : X → Y is a morphism. For any point x ∈ X, we have the equality on stalks

ΩX/Y, x = ΩOX,x/OY,f(x)

In particular, by the above lemma, on every open affine U = SpecB of X with corresponding open affine
V = SpecA of Y , the map d : B → ΩB/A induces the map

d̃U,V : OU = B̃ → Ω̃B/A = Ω1
V/U .

Glueing these maps together as we range over all open affines, it follows that we have a canonical map

d : OX → ΩX/Y

which is a derivation on all fibres. Note that this map d is NOT a morphism of OX -modules; it is instead a
morphism of f−1OY -modules, where recall that f−1OY is the sheafification of the presheaf

U 7→ colim
V open, f(U)⊂V⊂Y

OY (V ).
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Definition. Suppose f : X → Y , and suppose M is a OX -module. A Y -derivation is a homomorphism of
f−1OY -modules D : OX → M such that on every open subscheme U ⊂ X the map DU : OX(U) → M(U)
satisfies Liebniz’ rule.

Thus ΩX/Y is equipped with a canonical Y -derivation d : OX → ΩX/Y .
Suppose now we have a commutative diagram

X ′ X

Y ′ Y

g

f

of schemes. We have a morphism of OX′ -modules

g∗ΩX/Y := OX′ ⊗g−1OX
g−1ΩX/Y → ΩX′/Y ′ , 1⊗ g−1(dX/Y s) 7→ dX′/Y ′(1⊗ g−1(s)).

Here is a collection of results on the sheaf of relative differentials. Proofs for all of these can be found in
either [Har77] or [Ill02].

Proposition 2.4. Suppose f : X → Y is a morphism of schemes.

1. (Universal Property) The functor

Mod(OX) → Ab, M 7→ DerY (OX ,M),

taking a OX-module M to the (abelian) group of Y -derivations OX → M, is representable by ΩX/Y .

In other words, for any OX-module M with Y -derivation d′ : OX → M, there is a unique morphism
f : ΩX/Y → M of OX-modules such that d′ = f ◦ d.

2. If g : Y ′ → Y is another morphism, the sheaf of relative differentials of the induced map X ′ := X×Y Y
′ →

Y ′ is
ΩX′/Y ′ = p∗ΩX/Y

where p : X ′ → X is the morphism induced by base-changing g.

3. Suppose g : Y → Z is another morphism of schemes. There is an exact sequence

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0,

where the map f∗ΩY/Z → ΩX/Z is the canonical morphism induced by the square

X Y

Z Z.

f

g

4. If Y ′ → Y is another morphism, and X ′ := X ×Y Y ′, then

ΩX′/Y = p∗ΩX/Y ⊕ q∗ΩY ′/Y

where p : X ′ → X and q : X ′ → Y ′ are the canonical projections. Moreover, the canonical map

p∗ΩX/Y → ΩX′/Y ′

is an isomorphism of OX′-modules.

5. Suppose Z is a closed subscheme of X with corresponding ideal sheaf IZ . Then, there is a natural map
IZ/I2

Z → ΩX/Y ⊗OZ fitting into an exact sequence

IZ/I2
Z → ΩX/Y ⊗OZ → ΩZ/Y → 0.

6. For X = An
Y the affine space of dimension n over Y , the OX-module ⊗X/Y

∼= O⊕n
X is free (in the obvious

way)
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Suppose f : X → Y a morphism of schemes. Define the OX -module

Ωp
X/Y :=

p∧
ΩX/Y

with Ω0
X/Y := OX .

Lemma-Definition. There is a unique family of maps d : Ωp
X/Y → Ωp+1

X/Y satisfying

• the degree 0 map d : OX → Ω1
X/Y is the usual Y -derivation d : OX → ΩX/Y ;

• d is a Y -anti-derivation of the exterior algebra
∧∗

ΩX/Y =
⊕

p Ω
p
X/Y , i.e. d is f−1(OY )-linear and

d(ab) = da ∧ b+ (−1)ia ∧ db

for a a local section of OX and b a local section of Ωp
X/Y ; and

• the family of maps makes

Ω•
X/Y : OX

d−→ Ω1
X/Y

d−→ Ω2
X/Y → · · ·

into a complex, called the de Rham complex.

Remark 2.5. Even though each of the objects Ωp
X/Y are OX -modules, the complex Ω•

X/Y is NOT a complex

of OX -modules. This is because the differential maps d : Ωp
X/Y → Ωp+1

X/Y are not OX -linear but are only

f−1OY -linear. Hence, Ω•
X/Y is in fact a complex of f−1(OY )-modules.

Now, suppose we have a commuting diagram

X ′ X

Y ′ Y.

g

f

This square then induces a map
Ω•

X/Y → g∗Ω
•
X′/Y ′

of complexes, which is also a morphism of the corresponding differential graded algebra. Of course, if the above
square is Cartesian, then this map

Ω•
X/Y → g∗Ω

•
X′/Y ′

is an isomorphism.
Finally, let us briefly define the tangent bundle.

Definition. Suppose f : X → Y is a morphism. The relative tangent sheaf TX/Y is the sheaf

TX/Y := Hom(Ω1
X/Y ,OX).

Using the universal property of Ω1
X/Y , we see that for any open subscheme U of X, we have a natural

isomorphism
TX/Y (U) ∼= DerY (OU ,OU ).

2.2 Smooth Maps

Lemma-Definition. A morphism f : X → Y of schemes is flat if for any open affines Spec(A) ⊂ X and
Spec(B) ⊂ Y , the corresponding ring map B → A is flat. A morphism is faithfully flat if it is both surjective
and flat.

It is easy to check that flatness is an affine local (in the sense of Vakil) property on the target Y .

Proposition 2.6. Suppose f : X → S is a morphism of schemes.

1. f is flat if and only if for every x ∈ X the local ring map f#x : OY,f(x) → OX,x is flat.

2. f is flat if and only if for every S → S′, the pull-back functor QCoh(S′) → QCoh(X ×S S
′) induced by

the map X ×S S
′ → S′ is an exact functor.

9



3. Composite of flat morphisms is flat.

4. Fibre product of two flat (resp. faithfully flat) morphisms is flat (resp. faithfully flat).

5. Flatness and faithful flatness are preserved by base change.

6. If f is flat, then for every x ∈ X and every s ∈ S such that f(x) ∈ {s}, there exists x′ ∈ X such that
s = f(x′) and x ∈ {x′}.

7. If f is flat and locally of finite presentation, then it is universally open, i.e. for every S′ → S the induced
map X ×S S

′ → S′ is an open map.

8. If f is quasi-compact and faithfully flat (i.e. fpqc), then T ⊂ S is open (resp. closed) iff f−1(T ) is open
(resp. closed).

Thus, fpqc maps can be thought of as quotient maps.

Definition. A morphism f : X → Y is smooth (resp. unramified, resp. étale) if f is locally of finite presentation
and if the following condition is satisfied: for any commutative diagram

X

T0 T1 Y

g0

i

f

where i is a closed immersion such that the ideal sheaf IT0
in OT1

satisfies I2
T0

= 0, there exists locally in the
Zariski topology on T a (resp. at most one, resp. unique) Y -morphism g : T → X such that gi = g0.

Remark 2.7. We can remove the phrase ‘locally in the Zariski topology’ from the definition of étale morphism.

We now list basic properties of unramified, smooth, and étale morphisms.

Proposition 2.8. Suppose f : X → Y is a morphism of schemes.

1. Suppose f is locally of finite presentaiton. Then, f is unramified if and only if any one of the following
equivalent conditions hold:

(a) it is locally of finite presentation and for each x ∈ X and y = f(x), the residue field k(x) is a
separable algebraic extension of k(y), and fx(mY,y)OX,x = mX,x where fx : OY,y → OX,x.

(b) for any affine opens Spec(B) ⊂ X and Spec(A) ⊂ Y the induced map f# : A → B is formally
unramified.

(c) the diagonal map X → X ×Y X is an open immersion.

2. Composite of unramified morphisms is unramified.

3. Base change of an unramified morphism is unramified.

4. Open immersions are unramified.

5. Unramified-ness is affine local (in the sense of Vakil) on the target Y .

6. If f : X → Y is a morphism of S-schemes where X is unramified over S and Y is locally of finite type
over S, then f is unramified.

7. Suppose X and Y are S-schemes and f, g : X → Y morphisms over S. Suppose Y is unramified over S.
Let x ∈ X be such that f(x) = g(x) =: y where the maps fx, gx : k(y) → k(x) induced by f and g are
equal. Then, there exists a Zariski open neighbourhood U of x in X such that f |U = g|U .

8. If f is unramified, then ΩX/Y = 0.

Proposition 2.9. Suppose f : X → S is a morphism.

1. Suppose f is locally of finite presentation. Then, f is smooth if and only if any one of the following
conditions hold:

(a) f is flat and for every S-morphism s : Spec k ↪→ S for k algebraically closed, the fibre Xs = X ×S s
is regular.
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(b) f is flat and all fibers f−1(s) are regular and remain so after extension of scalars to some perfect
extension of k(s).

2. Composite of smooth morphisms is smooth.

3. Base change of an smooth morphism is smooth.

4. Open immersions are smooth.

5. Smoothness is affine local (in the sense of Vakil) on the target Y .

6. Smooth morphisms is universally open, i.e. f is open and for any base change Y ′ → Y , the corresponding
map X ×Y Y ′ → Y ′ is also open.

7. If f is smooth, then ΩX/Y is locally free of finite type. As a consequence, for f : X → Y smooth we have

T∨
X/Y := Hom(TX/Y ,OX) ∼= ΩX/Y .

8. Suppose g : Y → Z is another morphism of schemes. If f is smooth, the exact sequence of Proposi-
tion 2.4(3) extends to the locally split exact sequence

0 → f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

On the other hand, if g ◦ f is smooth and if the above sequence is exact and locally split, then f is smooth.

9. Suppose Z is a closed subscheme of X with corresponding ideal sheaf IZ . If f |Z is smooth, the exact
sequence of Proposition 2.4(4) extends to the locally split exact sequence

0 → IZ/I2
Z → ΩX/Y ⊗OZ → ΩZ/Y → 0.

On the other hand, if f is smooth and the above sequence is exact and locally split, then f |Z is smooth.

10. ( Implicit Function Theorem) Suppose Z is a closed subscheme of X with corresponding ideal sheaf IZ .
Suppose x ∈ Z is a point such that f |Z is smooth in some open neighbourhood U ∩ Z of x, with U ⊂ X
open. Write n = dim(IZ/I2

Z)x and n +m = dimk(x) ΩX/Y,x ⊗ k(x). Then, by shrinking U if necessary,

there is an étale morphism U → An+m
Y such that

U ∩ Z = U ×An+m
Y

An
Y

where An
Y ↪→ An+m

Y is the inclusion into the first n coordinates.

Now for each point x ∈ X, set
dimx(f) := dimk(x) ΩX/Y ⊗ k(x)

where k(x) is the residue field of x. If f is smooth, ΩX/Y is locally free and of finite type, and so dimx(f) :
X → Z≥0 is a locally constant function of x.

Definition. A smooth function f : X → Y is pure of relative dimension r if dimx(f) = r for all x ∈ X.

Lemma 2.10. If f is smooth and pure of relative dimension r, then Ωp
X/Y = 0 for all p > r, and Ωp

X/Y is a

locally free OX-module of rank
(
r
p

)
for all 0 ≤ p ≤ r.

Proposition 2.11. Suppose f : X → Y is a morphism.

1. f is étale if and only if any one of the following conditions hold:

(a) f is flat and unramified;

(b) f is smooth and unramified;

(c) f is smooth and pure of relative dimension 0;

(d) f is flat, locally of finite presentation, and every fibre f−1(y) is given by the disjoint union
⊔

i∈I Spec ki,y
where each ki,y is a finite separable field extension of the residue field κ(y);

(e) f is smooth and locally quasi-finite;

(f) f is locally of finite presentation and for any affine opens Spec(B) ⊂ X and Spec(A) ⊂ S the induced
map f# : A→ B is formally étale;
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(g) for every x ∈ X there is an open neighbourhood U of X around x and an open affine V = SpecA
around f(x) with f(U) ⊂ V such that U is V -isomorphic to an open subscheme of Spec

(
A[t]/ ⟨f⟩

)
f ′

for some monic f ∈ A[t] (with f ′ the usual derivative of f).

2. Étale morphisms are preserved under composition and base change.

3. Being an étale morphism is a local property on both the source and the target.

4. Product of a finite family of étale morphisms is étale.

5. Suppose g : Y → Z an unramified map and f : X → Y a map such that g ◦ f is étale. Then, f is étale.

6. Any S-morphism between étale S-schemes is étale.

7. Étale morphisms are locally quasi-finite.

8. Open immersions are étale. Moreover, a morphism is an open immersion if and only if it is étale and
universally injective.

9. A map X → Spec k is étale if and only if X is the disjoint union of Spec k′ for k′ a finite separable field
extension of k.

10. Étale morphisms are open.

2.3 de Rham Cohomology

Suppose f : X → Y is a morphism of schemes.

Definition. The de Rham cohomology of X over Y are the hyper -cohomology groups

Hp
dR(X/Y ) := Hi(X,Ω•

X/Y ) := Hi(RΓ(X,Ω•
X/Y )).

Remark 2.12. Suppose Y = SpecC, and suppose X is smooth (just to be safe). By GAGA, the algebraic de
Rham cohomology of X coincides with the usual differential-geometric de Rham cohomology of the complex
manifold Xan.

Remark 2.13. The de Rham cohomology groups are NOT the same as the cohomology of the complex Ω•
X/Y .

Of course, the cohomology of the complex Ω•
X/Y would be a sheaf of f−1OY -modules.

These de Rham cohomology groups are naturally modules over Γ(Y,OY ).
Given a commutative diagram

X ′ X

Y ′ Y,

g

f

the canonical maps Ω•
X/Y → g∗Ω

•
X′/Y ′ yields pullback maps

g∗ : RΓ(X,Ω•
X/Y ) → RΓ(X ′,ΩX′/Y ′)

and thus maps
g∗ : H∗

dR(X/Y ) → H∗
dR(X

′/Y ′).

In particular, taking Y ′ = Y , we see that Hq
dR defines a contravariant (δ-)functor

Hq
dR : SchY → Mod

(
OY (Y )

)
.

Lemma 2.14. Let X = SpecB and Y = SpecA, so that the map f : X → Y is induced by a ring map A→ B.
Then,

H∗
dR(X/Y ) ∼= H∗(Ω•

B/A)

is the usual cohomology of the complex Ω•
X/Y = Ω•

B/A.
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Let us try to compute de Rham cohomology in more generality. Of course, the de Rham cohomology is
NOT equal to the usual cohomology H∗(X,Ωq

X/Y ) of the bundle Ωq
X/Y for some specific q, as again we are

applying RΓ to Ω•
X/S and then taking cohomology. Thus, in order to compute de Rham cohomology, we need

to take an injective resolution I•,• of Ω•
X/S , i.e. I

•,• is a double complex of injective objects such that for each

p, the complex Ip,• is an injective resolution of Ωp
X/S . Writing I•tot for the total complex of the double complex

I•,•, our choice of I•,• means that Ω•
X/S → I•tot is a quasi-isomorphism where each term in I•tot is injective, and

so RΓΩ•
X/S is quasi-isomorphic to Γ(I•tot) = (ΓI)•tot. We can compute the cohomology of this total complex

by using a spectral sequence on the double complex ΓI•,•. Since Ip,• is an injective resolution of Ωp
X/Y , the

cohomology of ΓIp,• is precisely Hq(X,Ωp
X/Y ). By computing the spectral sequence in two different ways, we

get the following result.

Proposition 2.15 (Hodge to de Rham Spectral Sequence). There is a spectral sequence of Γ(Y,OY )-modules

Epq
1 = Hp+q(X,Ωp

X/Y ) ⇒ Hp+q
dR (X/Y ).

The differentials on the first page are the maps

dp,q1 : Hq(X,Ωp
X/Y ) → Hq(X,Ωp+1

X/Y )

induced by the usual differential d : Ωp
X/Y → Ωp+1

X/Y .

Corollary 2.15.1. H0
dR(X/Y ) = ker

(
d : Γ(X,OX) → Γ(X,ΩX/Y )

)
Definition. The Γ(Y,OY )-modules Hp,q

Hodge(X/Y ) := Hq(X,Ωp
X/Y ) are called the Hodge cohomology groups of

X over Y .

If for example Y = Spec k and f : X → Y is proper, then the Hodge cohomology groups are known to be
finite dimensional k-vector spaces, and thus the spectral sequence implies that the de Rham cohomology groups
are finite dimensional k-vector spaces.

There is another spectral sequence that computes de Rham cohomology (cf. [Sta23, 0FM6]). This sec-
ond spectral sequence relates the cohomology of the cohomology sheaves of the complex Ω•

X/Y to de Rham
cohomology.

Proposition 2.16 (Conjugate Spectral Sequence for de Rham Cohomology). There is a spectral sequence

Ep,q
2 = Hq(X,Hp(Ω•

X/Y )) ⇒ Hp+q
dR (X/Y ),

where Hp(Ω•
X/Y ) ∈ QCoh(X) is the cohomology sheaf of the de Rham complex.

2.4 Connections

We mostly follow [Con23], generalizing to arbitary schemes. This reference also has a lot of computations in
local coordinates, linking back to the classical theory.

2.4.1 Definition

Let p : X → Y be a morphism of schemes. Suppose E is a quasi-coherent sheaf on X (for example, E could be
a locally free coherent sheaf aka a vector bundle).

Definition. A connection on E relative to Y (or a Y -connection on E) is a map of abelian sheaves

∇ : E → ΩX/Y ⊗OX
E

that satisfies the Liebniz rule
∇(fs) = df ⊗ s+ f · ∇s

for f ∈ OX(U) and s ∈ E(U), for any open subscheme U ⊂ X.

Notice that ∇ is p−1OY -linear. Moreover, if ∇ and ∇′ are connections, then ∇−∇′ : E → ΩX/Y ⊗OX
E is

easily seen to be OX -linear. Thus, the space of connections on E relative to Y is a principal homogeneous space
under the group

Hom(E ,ΩX/Y ⊗OX
E).

Example 2.17. The canonical differential d : OX → ΩX/Y = ΩX/Y ⊗OX
OX is a connection on OX relative to

Y .
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Example 2.18. Suppose Λ is a locally free p−1OY -module with finite rank. Set E := OX ⊗p−1OY
Λ. Then, the

map
∇ := d⊗ 1 : E = OX ⊗p−1OY

Λ → ΩX/Y ⊗p−1OY
Λ = ΩX/Y ⊗OX

E
satisfies Liebniz rule (because d does), and hence is a connection. Moreover, one sees that under the canonical
map Λ → E , the image of Λ is killed by ∇. It turns out that ∇ is the unique connection on E killing Λ. If p is
smooth then it turns out that ker∇ = Λ.

If Y = Spec k, then by definition Λ is a local system (i.e. locally constant sheaf) of k-vector spaces, and the
above characterisation of ∇ is a key ingredient of the Riemann-Hilbert correspondence.

If we take Λ = p−1OY , the above construction recovers the previous example.

Example 2.19. There is a bijective correspondence between Y -connections ∇ on OX and global sections of
ΩX/Y . Namely, to a Y -connection ∇ on OS is associated the global section ω = ∇(1) ∈ ΩX/Y . Conversely,
given a global section ω ∈ ΩX/Y (X) we have the connection ∇ω : OX → ΩX/Y given by

∇ω(f) = df + fω.

Under this correspondence, the standard Y -connection d on OX corresponds to the zero section.

Classically, connections are a mechanism to differentiate sections of a vector bundle on a manifold along a
vector field. We can recover this construction in this more general case.

Definition. A vector field of X relative to Y is a Y -derivation of OX , i.e. it is an element of DerY (OX ,OX).
By the universal property of the sheaf of relative differentials, a vector field of X relative to Y can also be

viewed as a OX -linear morphism ΩX/Y → OX .

Recall the relative tangent bundle TX/Y . We see immediately that for any open subscheme U ↪→ X, the
space of sections TX/Y (U) is the space of all vector fields of U relative to Y .

Suppose v is a vector field of X relative to Y , which we view as a OX -linear morphism v : ΩX/Y → OX . If
∇ : E → E ⊗OX

ΩX/Y is a connection on a coherent sheaf E , then we have the composite

∇v : E ∇−→ E ⊗OX
ΩX/Y

1⊗v−−→ E ⊗OX
OX = E .

A similar statement holds for any open U ⊂ X. Hence, a connection defines (and is defined by) a OX -linear
map

TX/Y → Hom(E , E) =: End(E), v ∈ TX/Y (U) 7→ (1⊗ v) ◦ ∇ ∈ End(E|U ).
Since ∇ satisfies the Liebniz rule and v is OX -linear, it follows that ∇v also satisfies the Liebniz rule

∇v(f · s) = v(f) · s+ f · ∇v(s)

for all f ∈ OX(U) and s ∈ E(U), for all open U ⊂ X. Here, notice that we are now viewing v as a p−1OY -module
morphism v : OX → OX .

2.4.2 Another Perspective on Connections

There is another perspective on connections that is more algebraic-geometric. Consider the diagonal morphism
∆ : X → X ×Y X, and let I∆ ⊂ OX×Y X denote the ideal sheaf of this locally closed immersion. Set

PX/Y := OX×Y X/I2
∆.

This is the structure sheaf of the first infinitesimal thickening of the diagonal (see [Ill02, Section 1.1-1.2]). In
particular, it is naturally a sheaf on X. Now, the two projections p1 : X ×Y X → X and p2 : X ×Y X → X
induce maps

OX ∆∗OX×Y X PX/Y ,
p∗
1

p∗
2

denoted by j1 and j2 respectively. These morphisms ji : OX → PX/Y induce two different OX -algebra structures
on PX/Y . By definition, ΩX/Y = I∆/I2

∆, and so we have an injection ΩX/Y ↪→ PX/Y . One checks that we have
an exact sequence

0 ΩX/Y PX/Y OX 0

j1

j2

split by both j1 and j2. Here, the map PX/Y → OX is the map induced by ∆∗ : OX×Y X → OX , noting that the
kernel of ∆ is by definition I∆. Moreover, one checks that j2 − j1 : OX → ΩX/Y coincides with the canonical
differential d : OX → ΩX/Y (that j2 − j1 lands in the subsheaf ΩX/Y follows by exactness and the fact that j1
and j2 split the exact sequence.)
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Proposition 2.20. The data of a connection on a coherent OX-module E is the same as the data of a PX/Y -
linear isomorphism

PX/Y ⊗j2,OX
E ∼−→ E ⊗OX ,j1 PX/Y

lifting the identity on E.

Remark 2.21. By coherence of E , any PX/Y -linear map

PX/Y ⊗j2,OX
E → E ⊗OX ,j1 PX/Y

lifting the identity on E is automatically an isomorphism.

Proof. Let
ξ : PX/Y ⊗j2,OX

E ∼−→ E ⊗OX ,j1 PX/Y

be any morphism of abelian sheaves. It suffices to specify ξ at the level of the corresponding pre-sheaves, since
sheafification is an exact functor. Consider the comutative diagram

E

PX/Y ⊗j2,OX
E E ⊗OX ,j1 PX/Yξ

∆∗⊗1 1⊗∆∗

where ∆∗ : PX/Y → OX . Since ∆∗ ◦ j1 = ∆∗ ◦ j2 = idOX
, it follows that ξ lifts the identity on E if and only if

for any s ∈ E(U), the section
ξ(1⊗ s)− s⊗ 1

of E ⊗OX ,j1 PX/Y lies in the kernel of

1⊗∆ : E ⊗OX ,j1 PX/Y → E ⊗OX
OX = E ,

which is precisely E⊗OX
ΩX/Y . Thus, the morphism ξ lifts the identity on E if and only if we have a well-defined

a map
∇ : E → E ⊗OX

ΩX/Y ,

the correspondence given by ξ(1⊗ s) = s⊗ 1 +∇s.
Now, ξ is furthermore PX/Y -linear if and only if j2(f) · ξ(1 ⊗ s) = ξ(1 ⊗ fs) for f ∈ OX(U), where

j2 : OX → PX/Y . This equation is equivalent to

s⊗ j2(f) + f · ∇s = s⊗ j1(f) +∇(fs),

which by the formula d = j2 − j1 is precisely equivalent to ∇ satisfying the Liebniz rule.

Remark 2.22. This proposition can be viewed as saying that a connection is a first-order descent data on the
coherent sheaf E . See [BO15, Chapter 2].

2.5 Curvature, Integrable Connections, and Riemann-Hilbert

Recall that we could extend d : OX → ΩX/Y to form the differentials of a complex Ω•
X/Y . We can do a similar

thing for arbitrary connections. As always, fix a Y -scheme X.

Theorem 2.23. Suppose (E ,∇) is a coherent sheaf on X with a connection ∇ relative to Y . Then, for all
p ≥ 0, there is a unique abelian sheaf map

∇p : Ωp
X/Y ⊗ E → Ωp+1

X/Y ⊗ E

such that ∇0 = ∇ satisfying

∇p+q((ωp ∧ ωq)⊗ s) = ∇p(ωp ⊗ s) ∧ ωq + (−1)pωp ∧∇q(ωq ⊗ s)

for local sections s of E, ωp of Ωp
X/Y , and ωq of Ωq

X/Y .
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The definition of ∇p is essentially as follows. Suppose U ⊂ X open, and suppose s ∈ E(U) and ω ∈ Ωp
X/S(U)

are local sections. Then, we set
∇p(ω ⊗ s) := dω ⊗ s+ (−1)pω ∧∇s.

Here and throughout, when we write ω ∧ ρ for a section of Ωi
X/Y ⊗OX

(Ω1
X/Y ⊗OX

E we really mean the image

of ω ⊗ ρ ∈ Ωi
X/Y ⊗OX

(Ω1
X/Y ⊗OX

E under the canonical map

Ωi
X/Y ⊗OX

(Ω1
X/Y ⊗OX

E → Ωi+1
X/Y ⊗OX

E , ω ⊗ τ ⊗ e 7→ (ω ∧ τ)⊗ e.

Some tedious computation checks that ∇p is well-defined (for instance, that ∇p((fω) ⊗ s) = ∇p(ω ⊗ (fs)) for
any f ∈ OX(U)) and satisfies the required equation. By linearity it can then be extended to a well-defined
abelian sheaf map

∇p : Ωp
X/S ⊗OX

E → Ωp+1
X/S ⊗OX

E .

Uniqueness is obvious from the given characterising equation. The remaining statements are further tedious
calculations.

Some computation yields the following.

Lemma 2.24. For any ω a local section of Ωi
X/Y and any s a section of E, one has

(∇p+1 ◦ ∇p)(ω ⊗ e) = ω ∧ (∇1 ◦ ∇0)(e).

Corollary 2.24.1. Ω•
X/Y ⊗OX

E is a complex if and only if ∇1 ◦ ∇0 = 0.

This motivates the following definition.

Definition. The curvature K∇ of a connection ∇ is the map K∇ := ∇1 ◦ ∇0 : E → E ⊗OX
Ω2

X/Y .

A connection is integrable (or flat) if its curvature is identically zero. The resulting complex Ω•
X/Y ⊗OX

E
with differentials ∇p is called the de Rham complex of (E ,∇).

Another corollary of the previous computation is the following suprising (at least at first glance) fact.

Corollary 2.24.2. The curvature map K∇ : E → E ⊗OX
Ω2

X/Y is a OX-linear map of OX-modules.

Remark 2.25. Most authors abuse notation by writing ∇ for any of the ∇p. This abuse of notation is similar
in spirit to writing d : Ap → Ap+1 for the differentials of a complex A•, for all p.

Example 2.26. The connection d on OX is integrable. More generally, for a locally free π−1OY -module Λ of
finite rank (with π : X → Y the structure map), the resulting connection ∇Λ = d ⊗ 1 on OX ⊗π−1OY

Λ is
integrable.

Example 2.27. Recall the bijective correspondence ω ↔ ∇ω between global sections of ΩX/Y and Y -connections
on OX . Then,

K∇ω
: OX → Ω2

X/Y is given by f 7→ f · dω.

In particular, ∇ω is integrable if and only if ω is closed.

Remark 2.28. One can translate the condition of integrability in terms of the perspective given in Section 2.4.2,
and this is done in [BO15, Chapter 2]. Here, they show that a connection is integrable if and only if it can be
extended to a certain ‘stratification’ of the sheaf E .

Lemma 2.29. If X → Y is smooth, then ∇ is integrable if and only if ∇[v,w] = [∇v,∇w] for relative vector
fields v, w (i.e. local sections of TX/Y ).

Recall that a connection ∇ on E induces a morphism of sheaves

∇̃ : TX/Y → End(E).

Notice also that both TX/Y and End(E) have π−1OY -Lie algebra structures on them via the standard commu-
tator pairing. The previous lemma can thus be recast as the following.

Lemma 2.30. A connection ∇ is integrable if and only if ∇̃ is a Lie algebra morphism.

The importance of integrability is due to the Riemann-Hilbert correspondence.
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Theorem 2.31. Suppose X → SpecC is a smooth map of finite type, and suppose (E ,∇) is a coherent sheaf on
X with integrable connection. The sheaf ker∇ ⊂ E is a locally constant sheaf with C-rank equal to the OX-rank
of E, and the natural map

OX ⊗C ker∇ → E

is an isomorphism identifying ∇ with ∇ker∇ = d⊗ 1.
Moreover, the functors (E ,∇) 7→ ker∇ and Λ 7→ (OX ⊗C Λ,∇Λ) are inverse equivalences of categories

between the category of flat coherent sheaves and the category of local systems of finite dimensional C-vector
spaces.

We can relativize this correspondence as follows (cf. [Del70, Théorème 2.23]).

Definition. Suppose f : X → Y is smooth map of schemes/analytic spaces. A local relative system on X is a
sheaf of f−1OY -modules that is locally isomorphic to the sheaf-theoretic inverse image of a coherent sheaf on
Y .

Theorem 2.32. Suppose f : X → Y is a smooth map of complex analytic spaces X and Y , and suppose (E ,∇)
is a coherent sheaf on X with integrable Y -connection. The sheaf ker∇ ⊂ E is a local relative system with
f−1OY -rank equal to the OX-rank of E, and the natural map

OX ⊗f−1OS
ker∇ → E

is an isomorphism identifying ∇ with ∇ker∇ = d⊗ 1.
Moreover, the functors (E ,∇) 7→ ker∇ and Λ 7→ (OX ⊗f−1OY

Λ,∇Λ) are inverse equivalences of categories
between the category of coherent sheaves on X with a flat Y -connection, and the category of local relative systems
on S.

Bhatt and Lurie also proved a version of Riemann Hilbert in positive characteristic, though they work with
étale sheaves rather than Zariski sheaves as above.

An integrable connection imposes non-trivial conditions on the geometry of the underlying sheaf. For
instance, we have the following proposition.

Proposition 2.33 ([Kat70b, Proposition 8.9]). Suppose X is smooth over a field of characteristic 0, and let E
be a coherent sheaf with flat connection. Then, E is a locally free sheaf on X.

2.6 The Category MC(X/Y ) of Sheaves with Connections

Throughout, we fix p : X → Y .

Definition. Suppose (E ,∇) and (F ,∇′) are quasi-coherent OX -modules with Y -connections. An OX -linear
mapping Φ : E → F is horizontal if

Φ|U ◦ ∇v = ∇′
v ◦ Φ|U

for all local sections v ∈ TX/Y (U), for all open U ⊂ X.
LetMC(X/Y ) denote the abelian category whose objects are (E ,∇) where E are quasi-coherent OX -modules

with connection ∇, and whose morphisms are horizontal OX -linear maps.
Let MCint(X/Y ) be the full subcategory of MC(X/Y ) consisting of sheaves with flat connection.

Of course, in order that MC(X/Y ) is an abelian category, we need kernels and cokernels. Suppose Φ :
(E ,∇) → (F ,∇′) is a horizontal morphism. The kernel of Φ in QCoh(X) is simply the sheaf U 7→ kerΦU . Since
Φ is horizontal, one checks that the image of

∇|kerΦ : kerΦ → Ω1
X/Y ⊗OX

E

is in fact contained in Ω1
X/Y ⊗OX

kerΦ. It is clear that (kerΦ,∇|kerΦ) acts as the kernel of Φ in the category

MC(X/Y ). One can do a similar thing for cokernels, though the sheafification required in the definition of a
cokernel of a map of quasicoherent sheaves makes things slightly more annoying.

This abelian category MC(X/Y ) has further operations defined on it, such as a direct sum, tensor product,
etc.

Definition. Given two quasi-coherent sheaves E , E ′ on X with connections ∇,∇′ respectively, the direct sum
∇⊕∇′ is the connection

E ⊕ E ′ ∇⊕∇′

−−−−→ (E ⊗OX
ΩX/Y )⊕ (E ′ ⊗OX

ΩX/Y ) ∼= (E ⊕ E ′)⊗OX
ΩX/Y .
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Lemma-Definition. Given two quasi-coherent sheaves E , E ′ on X with connections ∇,∇′ respectively, the
tensor product ∇⊗∇′ is the connection

E ⊗ E ′ → (E ⊗ E ′)⊗OX
ΩX/Y

given by
s⊗ s′ 7→ ∇(s)⊗ s′ + s⊗∇′(s′).

Recall that for a quasi-coherent sheaf E , the dual sheaf is

E∨ := HomOX
(E ,OX), i.e. given by E∨(U) := HomOU

(E|U ,ΩX/Y |U ).

Lemma-Definition. Given a quasi-coherent sheaf E on X with connection ∇, the dual connection ∇∨ is the
connection

E∨ → E∨ ⊗OX
ΩX/Y

given by
∇∨(ℓ) := d ◦ ℓ− (1⊗ ℓ) ◦ ∇ ∈ HomOU

(E|U ,ΩX/Y |U ) = Γ(U, E∨ ⊗OX
ΩX/Y )

for any ℓ ∈ E∨(U).

Notice that, for any U ⊂ X open and any ℓ ∈ E∨(U) and s ∈ E(U), we have the section ℓ(s) ∈ OX . Then,
the dual connection ∇∨ is constructed so that

d
(
ℓ(s)

)
= (∇∨ℓ)(s) + (1⊗ ℓ)(∇s).

One can check that (E∨)∨ ∼= E and ∇∨∨ = ∇.
One also has a internal Hom functor, though certain extra conditions are required.

Lemma-Definition. Suppose given two quasi-coherent sheaves E1, E2 on X with connections ∇1,∇2 respec-
tively. Suppose also that E1 is locally of finite presentation. We can define a connection ∇ on E = Hom(E1, E2) =
E2 ⊗ E∨

1 via
∇ = ∇2 ⊗∇∨

1 .

One checks that for a local section φ : E1|U → E2|U of E , we have

∇φ = ∇2 ◦ φ− (1⊗ φ) ◦ ∇1 ∈ Γ(U, E ⊗OX
ΩX/Y ) = HomU

(
E1|U , (E2 ⊗OX

ΩX/Y )|U
)
.

One can check that all of the above constructions are compatible for each other. One can also check that
all of the above constructions preserve the category MCint(X/Y ).

The next construction gives a sort of functoriality between different MC(−) categories.

Lemma-Definition. Suppose we have a commutative square

X ′ X

Y ′ Y

h′

p′ p

h

and a quasi-coherent sheaf E on X with a connection ∇ relative to Y . The pullback connection ∇′ on the
quasi-coherent sheaf h′

∗E on X ′ relative to Y ′ is the map

∇′ : h′
∗E := OX′ ⊗h′−1OX

h′
−1E → ΩX′/Y ′ ⊗OX′ h

′∗E

given by

∇′(f ′ ⊗ h′
∗
s) := df ′ ⊗ h′

−1
s+ f ′ · (η ⊗ 1)

(
h′

∗
(∇s)

)
where η : h′

∗
ΩX/Y → ΩX′/Y ′ is the canonical map.

The above construction yields a functor (h, h′)∗ : MC(X/Y ) → MC(X ′/Y ′) that sends integrable sheaves
to integrable sheaves.

Finally, all of these constructions are also compatible with the above construction of a connection on
OX ⊗p−1OY

Λ for Λ a locally free p−1OY -module on Y of finite rank. For instance, if we denote ∇Λ to be
the connection on EΛ := OX ⊗p−1OY

Λ, then
∇∨

Λ = ∇Λ∨ .
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Remark 2.34. There is actually a neat way to see the abelian category structure on MCint(X/Y )-directly.
Suppose X → Y is fixed, and consider the tangent sheaf TX/Y . Let

T •TX/Y :=
⊕
n≥0

T⊗n
X/Y

be the corresponding sheaf of tensor algebras, where T⊗0
X/Y := OX . We then define the sheaf DX/Y , the sheaf of

PD differential operators, by taking the sheafification of the quotient of T •TX/Y under the equivalence relation
generated by

∂ · f − f · ∂ = ∂(f) and ∂ ⊗ ∂′ − ∂′ ⊗ ∂ = [∂, ∂′]

for local sections ∂, ∂′ of TX/Y and f a local section of OX . It turns out that a quasi-coherent sheaf with inte-
grable connection can be viewed as a quasi-coherent DX/Y -modules on X, and this gives an equivalence of cat-
egories between MCint(X/Y ) and QCohX(DX/Y ). This perspective also immediately shows that MCint(X/Y )
has enough injectives.

See [EG17, Section 2.3] for more on PD differential operators, and see [Kat70b, (1.2)] for references on
MCint(X/Y ) being the category of quasi-coherent modules over some sheaf of algebras.

2.7 de Rham Cohomology Sheaves

Suppose π : X → Y is a morphism of schemes. Recall that we defined the de Rham cohomology group
Hp

dR(X/Y ) as the image of Ω•
X/Y under the composition of the derived functors

DCoh(X)
RΓ−−→ D(Ab)

Hp

−−→ Ab.

Here, for a scheme S, we write DCoh(S) to be the derived category of coherent sheaves on S. We can do a
similar thing for Rπ∗ instead.

Definition. The p’th relative de Rham cohomology sheaf Hp
dR(X/Y ) is the image of Ω•

X/Y under the compo-
sition

DCoh(X)
Rπ∗−−−→ DCoh(Y )

Hp

−−→ Coh(Y ).

Notice that the relative de Rham cohomology sheaf is a coherent sheaf on Y .
The OY -modules Hp,q

Hodge(X/Y ) := Rqπ∗Ω
p
X/Y on Y are the Hodge cohomology sheaves.

This has all the usual properties that one would expect from cohomology sheaves.

Proposition 2.35. The sheafification of the pre-sheaf on Y

V 7→ Hp
dR(π

−1(V )/Y )

is the sheaf Hp
dR(X/Y ) (where recall that π−1(V ) = X ×Y V ).

Proof. Let I•,• be a Cartan-Eilenberg resolution of Ω•
X/Y , i.e. I

•,• is a double complex of injective sheaves on

X such that for every p ≥ 0, we have an injective resolution Ωp
X/Y → Ip,•. Then Rπ∗Ω

•
X/Y is quasi-isomorphic

to the total complex of the double complex π∗I•,•. Thus, Hp
dR(X/Y ) can be computed by computing π∗Ip,q.

Notice that π∗Ip,q is the sheafification of the pre-sheaf V 7→ Γ(π−1(V ), Ip,q) on Y . Since sheafification is exact
and so commutes with cohomology, it follows that Hp

dR(X/Y ) is the sheafification of the pre-sheaf

V 7→ Hp (Tot (Γ(V, I•,•))) .

Here, we also need to use the fact that sheafification commutes with totalisation of a first quadrant double
complex, which I•,• is. This last cohomology group is precisely Hp

dR(π
−1(V ),Ω•

X/Y ) as required.

We can relativize the previous two spectral sequences in de Rham cohomology.

Proposition 2.36. Suppose π : X → Y is a morphism of schemes, with associated de Rham cohomology sheaves
H∗

dR(X/Y ). We have the following two spectral sequences:

• (Hodge to de Rham SS) Ep,q
1 = Hp,p+q

Hodge(X/Y ) ⇒ Hp+q
dR (X/Y ).

• (Conjugate SS) Ep,q
2 = Rqπ∗

(
HpΩ•

X/Y

)
⇒ Hp+q

dR (X/Y ).

Proposition 2.37. If π : X → Y is a proper smooth morphism of schemes of characteristic 0, then the
Hodge-to-de Rham spectral sequence degenerates at the E1 page.
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As a result of an abstract proper base change theorem (see [Kat70b, Section 8] for more), we have the
following result on the de Rham cohomology sheaves.

Proposition 2.38. Suppose π : X → Y is a proper smooth morphism, and suppose Y is Noetherian.

1. There is a non-empty open V ⊂ Y such that each of the coherent sheaves Hp,q
Hodge(X/Y ) and Hp

dR(X/Y )
(for p, q ≥ 0) are locally free over U .

2. If Y is of characteristic 0, then we may take U = Y .

3. Suppose further that all the Hodge and de Rham cohomology sheaves are locally free. Then, for any
g : Y ′ → Y , the canonical morphisms

g∗Hp,q
Hodge(X/Y ) → Hp,q

Hodge(X
′/Y ′) and g∗Hn

dR(X/Y ) → Hn
dR(X

′/Y ′)

are isomorphisms for all p, q, n ≥ 0, where X ′ := X ×Y Y ′.

2.8 Gauss-Manin Connections

It turns out that we can endow the de Rham cohomology sheaves with a canonical integrable connection, the
Gauss-Manin connection. Let us restrict to the case π : X → Y a smooth map where X and Y are smooth
k-schemes (k some field); we reproduce the construction given in [KO68, Section 2]. For an example of some
explicit computations, see Section 3 of loc. cit.

The complex admits Ω•
X/k admits a canonical filtration

Ω•
X/k = F 0Ω•

X/k ⊃ F 1Ω•
X/k ⊃ · · ·

where F i = F iΩ•
X/k is the complex with terms

(F i)p = Im
(
Ωp−i

X/k ⊗OX
π∗Ωi

Y/k → Ωp
X/k

)
.

Since we have assumed X and Y are smooth over k, the sheaves Ωi
X/k and Ωi

Y/k are both locally free of finite
type. Also, since π is smooth, we have the exact sequence

0 → π∗ΩY/k → ΩX/k → ΩX/Y → 0.

These two facts together imply that the associated graded objects

gri = griΩ•
X/k := F i/F i+1

have pth term
(gri)p = π∗Ωi

Y/k ⊗OX
Ωp−i

X/Y .

We need to use the following lemma, which is a consequence of abstract nonsense in abelian categories (see
[Sta23, 012K] for instance).

Lemma 2.39. Suppose K• is a filtered complex with a finite filtration

K• = F 0K• ⊃ F 1K• ⊃ F 2K• ⊃ · · · .

Set grpK• = F pK•/F p+1K•; notice that grpK• is also a complex, and so taking cohomology of grpK• makes
sense. There is a spectral sequence

Ep,q
1 = Hp+q(grpK•) ⇒ Hp+q(K•).

We take K• = π∗Ω
•
X/k; then we have a spectral sequence as in the lemma with first page

Ep,q
1 = Rp+qπ∗(gr

p),

which some computation shows that

Ep,q
1 = Ωp

Y/k ⊗OY
Hq

dR(X/Y ).

Now, we have a map

∇ = d0,q1 : Hq
dR(X/Y ) = E0,q

1 → E1,q
1 = ΩY/k ⊗OY

Hq
dR(X/Y ).
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After some computation with the product structure on the spectral sequence induced by the wedge product
∧ : F p ⊗ F q → F p+q, one checks that this map ∇ satisfies Liebniz’ rule, and so is a connection. However, we
see from the explicit form of Ep,q

1 that the complex E•,q
1 is precisely the de Rham complex, which implies that

the connection is integrable. This is the Gauss-Manin connection.
There is another (possibly slightly more concrete) description. In fact, the map d0,q1 is the connecting

homomorphism of the functor Rqπ∗ in the long exact sequence associated to the short exact sequence

0 → gr1 → F 0/F 2 → gr0 → 0.

Remark 2.40. In fact, one can upgrade the above construction of the de Rham cohomology sheaf with its Gauss-
Manin connection to the following very general setting. Suppose f : X → Y is a smooth morphism of smooth
S-schemes for some base scheme S. We have a functor

Hq
dR(X/S,−) :MCint(X/S) →MCint(Y/S)

that sends a flat bundle E with connection ∇ to Hq ◦ Rf∗(Ω•
X/S ⊗OX

E), endowed with the Gauss-Manin

connection. The functorHq
dR(X/S,−) is in fact the q’th right-derived functor ofH0

dR(X/S,−). The construction
of the Gauss-Manin connection is essentially the same as above.

See [Kat70b, (3.0)] for all the detail you may need.
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3 Differential Geometry in Positive Characteristic

Recall that a scheme is of characteristic p if it is a scheme over SpecFp, or equivalently, if pOX = 0. Throughout,
unless otherwise stated, we will assume all schemes to be over Fp for a fixed prime p.

Our main reference is [Kat70b].

3.1 Frobenius and Cartier Morphisms

For this subsection, see [Ill02, Section 3].

Definition. Suppose X is a Fp-scheme. The absolute Frobenius FX is the endomorphism of the ringed space
(X,OX) that is the identity on the underlying space X, and acts on OX by raising to the pth power.

X is said to be perfect if FX is an isomorphism.

It is easy to see that if X = SpecA, then FX corresponds to the usual Frobenius morphism A→ A, a 7→ ap.
One can also check easily that if f : X → Y is a morphism of Fp-schemes, then we have a commuting square

X X

Y Y.

FX

f f

FY

Definition. Suppose X is a Y -scheme with structure map f : X → Y . The relative Frobenius twist is the
Y -scheme

X(p) = X ×Y,FY
Y,

i.e. it is defined by the commuting square

X(p) X

Y Y.

f

FY

⌟

For any Fp-scheme X, the absolute Frobenius twist is the Frobenius twist of X relative to Y = SpecFp.

Due to the fibre product, the morphisms FX : X → X and f : X → Y induce a map FX/Y : X → X(p)

sitting inside the following diagram.

X

X(p) X

Y Y

f

FY

W

⌟

FX

f

FX/Y

It is a fact that the endomorphism FX/Y ◦W on X(p) is the absolute Frobenius on X(p).

Definition. The morphism FX/Y : X → X(p) is the relative Frobenius of X over Y .

Notice that the relative Frobenius is a homeomorphism on the underlying topological space.

Example 3.1. If Y = SpecA and X = An
A = SpecA[t1, ..., tn], then X

′ = SpecA[t1, ..., tn] with the morphism
FX/Y : X → X(p) is induced by the ring morphism

A[t1, ..., tn] → A[t1, ..., tn], ti 7→ tpi

whereas the canonical projection morphism X(p) → X is induced by the ring morphism

A[t1, ..., tn] → A[t1, ..., tn], ati 7→ apti.

Remark 3.2. While in the above affine case it is true that the relative Frobenius twist of X is isomorphic as a
scheme to X, this is not always the case.

Proposition 3.3. Suppose f : X → Y is a smooth morphism of pure relative dimension n. Then, the relative
Frobenius FX/Y : X → X(p) is a finite flat morphism, and the OX(p)-algebra FX/Y,∗OX is locally free of rank
pn.
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Corollary 3.3.1. If f is étale, then FX/Y is an isomorphism and the square

X X

Y Y.

FX

f f

FY

is Cartesian.

Let us now see the interplay of the relative Frobenius morphism with the relative de Rham complex. The
basic fact at play is that d(sp) = psp−1ds = 0 in characteristic p. In particular, the canonical morphism
F ∗
XΩX/Y → ΩX/Y coming from the square

X X

Y Y

FX

f f

FY

is the zero map. Similarly, the canonical morphism F ∗
X/Y ΩX(p)/Y → ΩX/Y coming from the commuting square

X X(p)

Y Y

FX/Y

f

id

is the zero map as well.
Another consequence is that the differential of the complex FX/Y,∗Ω

•
X/Y is OX(p)-linear. In particular, this

forces that the cohomology sheaves HqFX/Y,∗Ω
•
X/Y are all OX(p) -modules. The exterior product then induces

a graded anti-commutative OX(p) -algebra structure on⊕
q

HqFX/Y,∗Ω
•
X/Y .

The following theorem of Cartier is an important fundamental result in the differential theory in positive
characteristic. In order to state it, labelling the canonical projection map X(p) → X (coming from the fibre
product) by F ′, we know that

Ω1
X(p)/Y

∼= F ′∗Ω1
X/Y = OX(p) ⊗F ′−1OX

F ′−1
Ω1

X/Y .

In particular, if ds is a local section of Ω1
X/Y , we can denote the local section of Ω1

X(p)/Y
by 1⊗ ds.

Theorem 3.4. Suppose Y is a Fp-scheme and f : X → Y a morphism.

1. There exists a unique homomorphism of graded OX(p)-algebras

γ :
⊕
q

Ωq
X(p)/Y

→
⊕
q

HqFX/Y,∗Ω
•
X/Y

satisfying the two conditions:

• for i = 0, γ is given by the homomorphism F ∗
X/Y : OX(p) → FX/Y,∗OX ; and

• for i = 1, γ sends 1⊗ ds ∈ Ω1
X(p)/Y

to the class of sp−1ds in H1FX/Y,∗Ω
•
X/Y .

2. If f is smooth, then γ is an isomorphism.

The isomorphism γ is constructed in [Kat70b, Theorem 7.2].

Definition. For X a smooth Y -scheme, the isomorphism γ in the above theorem is called the Cartier isomor-
phism, and is denoted by C−1. The map C = γ−1 is often called the Cartier operation.

Suppose Y is perfect and f : X → Y is smooth. We have an isomorphism⊕
q

Ωq
X/Y →

⊕
q

F ′
∗Ω

q
X(p)/Y

where F ′ : X(p) → X is the canonical projection morphism. Composing with the Cartier isomorphism, we get
an isomorphism

C−1
abs :

⊕
q

Ωq
X/Y →

⊕
q

HqFX,∗Ω
•
X/Y

of graded OX -algebras
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Definition. The above isomorphism C−1
abs is called the absolute Cartier isomorphism.

As a result of the Cartier isomorphism, one can rewrite the conjugate spectral sequence for smooth π : X →
Y , where Y is such that FY is flat, as

Ep,q
2 = F ∗

Y (R
qπ∗(Ω

p
X/Y )) ⇒ Hp+q

dR (X/Y ).

For more information, see [Kat70b, Section 7].

3.2 p-Curvature and Nilpotence

As usual, fix π : X → Y . Throughout, we will use the identification TX/Y = DerY (OX ,OX).

Suppose D is any derivation of OX . One can check, by using the fact that p|
(
p
i

)
for 1 ≤ i ≤ p− 1, that Dp

also satisfies Liebniz rule. Thus, the pth iterate of a derivation is also a derivation. Thus, TX/Y is a sheaf of a
restricted p-Lie algebra, where we recall the definition of a restricted p-Lie algebra below.

Definition. Suppose V is a Lie algebra over a field k of characteristic p. A p-operation is a map ()p : V → V
satisfying the following axioms:

1. adXp = adpX the composition of adX with itself p times;

2. (aX)p = apXp for all a ∈ k;

3. (X + Y )p = Xp + Y p +
∑p−1

i=1
1
i si(X,Y ), where si(X,Y ) is the coefficient of ti−1 in the formal expression

adp−1
tX+Y (X).

Here, adX is the linear map adX : V → V, Y 7→ [X,Y ].

Notice that for a quasi-coherent sheaf E on X, the sheaf End(E) is also a sheaf of restricted p-Lie algebras,
with the p-operation simply iterating an endomorphism p-times. Thus if ∇ is a flat connection on E , we have a
Lie algebra morphism of sheaves

∇ : TX/Y → End(E)

between sheaves of restricted p-Lie algebras, and so one may ask whether ∇-preserves the p-operation. This
yields the following definition.

Definition. The p-curvature ψ of a connection ∇ is the mapping of sheaves

ψ : TX/Y → EndOX
(E), D 7→ ∇p

D −∇Dp .

Here, it requires a computation to check that ψ(D) is in fact a OX -linear map, as a priori it is only
π−1OY -linear.

The significance of p-curvature comes from the following theorem of Cartier.

Theorem 3.5. Suppose π : X → Y is a smooth morphism of schemes. Recall the relative Frobenius twist X(p)

of X with respect to Y , with relative Frobenius FX/Y : X → X(p).

There is an equivalence of categories between the category of quasicoherent sheaves on X(p) and the full
subcategory of MCint(X/Y ) consisting of sheaves on X with connections of zero p-curvature. The equivalence
is given as follows:

• Given a quasi-coherent sheaf E on X(p), there is a unique integrable Y -connection ∇ of p-curvature 0 on
F ∗
X/Y (E) such that E ∼= ker∇.

• For a flat quasi-coherent integrable sheaf (E ,∇) with zero p-curvature, the sheaf ker∇ is naturally a quasi-
coherent sheaf on X(p).

We have some basic properties of p-curvature.

Proposition 3.6. Suppose ψ is the p-curvature of a flat connection ∇ on E ∈ QCoh(X).

1. (p-linearity) ψ(gD) = gpψ(D) for all local sections g of OX and D of TX/Y .

2. For U ⊂ X open and D ∈ TX/Y (U), the three elements ∇D,∇Dp , and ψ(D) of EndOU
(E|U ) mutually

commute.

3. Suppose X → Y is smooth. If D,D′ are any two local sections of TX/Y , then ψ(D) and ψ(D′) commute.
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4. Suppose X → Y is smooth. ψ(D) : E|U → E|U is a horizontal map, for all D ∈ TX/Y (U).

Corollary 3.6.1. Suppose ψ is the p-curvature of a flat connection ∇ on E ∈ QCoh(X), and suppose X → Y
is smooth. Let n ≥ 1 be a given integer. The following are equivalent.

• There exists a filtration of (E ,∇) of length ≤ n whose associated graded objects all have p-curvature 0.

• Whenever D1, ..., Dn are local sections of TX/Y , we have ψ(D1) · · ·ψ(Dn) = 0.

• There exists a covering of S by affine opens, and on each such open affine U there exist sections u1, ..., ur ∈
OX(U) such that Ω1

X/Y |U is free on du1, ..., dur (these ui can be viewed as coordinates) such that for every

r-tuple (w1, ..., wr) of integers with
∑

i wi = n, we have

∇pw1

∂u1
· · · ∇pwr

∂ur
= 0

where {∂ui} is dual to the basis {dui}.

• The map ψn : FX/Y,∗E → FX/Y,∗E ⊗O
X(p)

(Ω1
X(p)/Y

)⊗n is the zero map.

Definition. Say that (E ,∇) is nilpotent of exponent ≤ n when one of the above equivalent conditions holds.
Say that (E ,∇) is nilpotent if it is nilpotent of exponent ≤ n for some n ≥ 1.

Let Nil(X/Y ) be the full subcategory of MCint(X/Y ) of nilpotent flat sheaves, and let Niln(X/Y ) be the
full subcategory consisting of those flat sheaves that are nilpotent of exponent ≤ n.

Proposition 3.7. Suppose (E ,∇) ∈ MCint(X/Y ). If (E ,∇) is nilpotent, then for any D ∈ TX/Y (U) (viewed
as π−1OY -linear endomorphism of OX) which is nilpotent, the corresponding π−1OY |U -linear endomorphism
∇D of E|U is nilpotent.

If π : X → Y is smooth, then the converse holds.

Proposition 3.8. The category Nil(X/Y ) is an exact abelian subcategory of MCint(X/Y ), that is stable under
internal Hom and the tensor product.

Each Niln(X/Y ) is stable under taking sub-objects and taking quotients. If E ∈ Niln(X/Y ) and F ∈
Nilm(X/Y ), then E ⊗ F and Hom(E ,F) (with their corresponding flat connections) are in Niln+m−1(X/Y )

Proposition 3.9. Suppose π : X → Y is a smooth morphism, and suppose we have a commutative diagram

X ′ X

Y ′ Y

g

π′ π

h

such that π′ is also smooth. We assume (as always) that all schemes are over Fp. Then, under the inverse
image functor

(g, h)∗ :MCint(X/Y ) →MCint(X
′/Y ′),

we have for any n ≥ 1,
(g, h)∗

(
Niln(X/Y )

)
⊆ Niln(X ′/Y ′).

There is also a very strong statement ([Kat70b, Theorem 5.10]) on the stability of nilpotence under the
de Rham cohomology sheaf functor given in Section 2.8. In fact, it not only gives bounded on the nilpotence
exponent for the de Rham cohomology sheaves, but also gives information about a certain spectral sequence
computing the de Rham cohomology sheaf. We do not reproduce it here, since we did not introduce the de
Rham cohomology sheaf functor in that level of generality. However, we do have the following result as a
consequence of Katz’s theorem. The statement given below is adapted from [EG17, Theorem 2.7].

Proposition 3.10. Suppose X → Y is a proper smooth morphism of pure relative dimension n between smooth
k-varieties, for k a perfect field of characteristic p. Then, the Gauss-Manin connection on Hq

dR(X/Y ) has
nilpotent p-curvature.
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3.3 Nilpotence over Global Bases

Suppose Y = SpecR where R is an integral domain, finitely generated as a ring over Z, whose field of fractions
has characteristic 0. Such a Y is often referred to as a global affine variety. Fix a morphism π : X → Y .

Suppose p is a prime that is not invertible on X, i.e. p is not invertible as an element of OX . Write
Yp := Spec (R/pR) = Y ×Z Fp and Xp := X ×Z Fp for the reduction modulo p. We obviously have a commuting
diagram

Xp X

Yp Y

πp π

which thus induces a functor
MCint(X/Y ) →MCint(Xp/Yp).

We denote this functor by (E ,∇) 7→ (Ep,∇p). One can now ask about the nilpotence properties of Ep.

Definition. Say (E ,∇) is globally nilpotent on X/Y if, for every prime p not invertible on S, we have (Ep,∇p) ∈
Nil(Xp/Yp).

Suppose n ≥ 1 is fixed. Say (E ,∇) is globally nilpotent of exponent n on X/Y if, for every prime p not
invertible on S, we have (Ep,∇p) ∈ Niln(Xp/Yp).

We have some basic properties. The following is obvious from Proposition 3.9.

Proposition 3.11. Suppose π : X → Y and π′ : X ′ → Y ′ are smooth, with Y and Y ′ global affine varieties.
Suppose we have a commutative diagram

X ′ X

Y ′ Y.

g

π′ π

h

Suppose (E ,∇) is an object of MCint(X/Y ) with E locally free of finite rank on X. If (E ,∇) is globally nilpotent
(resp. globally nilpotent of exponent n) on X/Y then its inverse image (g, h)∗(E ,∇) is also globally nilpotent
(resp. globally nilpotent of exponent n) on X ′/Y ′.

Proposition 3.12. Suppose Y a global affine variety, π : X → Y smooth, and g : X ′ → X a proper étale
morphism. Suppose (E ,∇) is an object of MCint(X

′/Y ) with E locally free of finite rank on X. Then, (E ,∇)
is globally nilpotent (resp. globally nilpotent of exponent n) on X ′/Y if and only if (g∗E ,∇) is also globally
nilpotent (resp. globally nilpotent of exponent n) on X/Y .

It turns out that the de Rham cohomology sheaves equipped with the Gauss-Manin connection are always
globally nilpotent.

Proposition 3.13. Suppose π : X → S is proper and smooth with S connected, where X and S are smooth
over a global affine variety Y . Assume that all the coherent sheaves Hp,q

Hodge(X/S) and Hn
dR(X/S) are locally

free on S. For each integer n ≥ 0, let h(n) denote the number of integers i such that Hi,n−i
Hodge(X/S) is non-zero.

Then, Hn
dR(X/S) with the Gauss-Manin connection is globally nilpotent of exponent h(n) on S/Y .
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4 Logarithmic Singularities and Monodromy ‘at ∞’

Suppose π : X → S is a smooth morphism of schemes that is pure of relative dimension n. Thus, ΩX/S is
a locally free OX -module of rank n. Let i : Y ↪→ X the closed immersion of a divisor Y in X over S. Let
j : X − Y ↪→ X be the open immersion of the complement.

Definition. The divisor Y is said to have normal crossings if X admits a cover U by open affines such that for
any U ∈ U ,

• U is étale over An
S (via coordinates x1, ..., xn where xi : U → S are morphisms such that dx1, ..., dxn form

a basis for ΩX/S |U ); and

• there exists r ≥ 0 such that Y |U is defined by the equation x1 · · ·xr = 0 (i.e. Y is the inverse image under
U → An

S of the first r-coordinate hyperplanes in An
S).

Say that an open affine U satisfying the above two conditions is an open cover of X adapted to Y , and that
U ∈ U is an open affine adapted to Y .

In some sense, divisors with normal crossings are those divisors such that their prime divisors (i.e. sub-
schemes) all intersect transversely.

Throughout this section, we will be in the above setup, with the added assumption that Y is a normal
crossings divisor. The main reference is [Kat70b].

4.1 de Rham Cohomology and Connections with Singularities

We define a locally free OX -module ΩX/S(log Y ). Let U be an open cover of X adapted to Y . For any U ∈ U
with coordinates x1, ..., xn, let r be such that Y |U is defined by x1 · · ·xr = 0. Then, we set

ΩX/S(log Y ) := OU (
dx1

x1
)⊕ · · · ⊕ OU (

dxr

xr
)⊕OUdxr+1 ⊕ · · · ⊕ OUdxn.

We again have the exterior differential map d : OX → ΩX/S(log Y ) given in the obvious way. Set Ωp
X/S(log Y ) :=∧p

OX
ΩX/S(log Y ) with Ω0

X/S(log Y ) := OX . As before, this map induces a complex structure on Ω•
X/S(log Y ).

One checks that the canonical inclusion OX ↪→ j∗OX−Y extends so that we can view Ωp
X/S(log Y ) as a subsheaf

of j∗(Ω
p
(X−Y )/S), and in fact this map

Ωp
X/S(log Y ) ↪→ j∗(Ω

p
(X−Y )/S)

is a map of complexes. In other words, the usual exterior differentiation in j∗Ω
•
(X−Y )/S preserves the complex

Ω•
X/S(log Y ).

Definition. The complex Ω•
X/S(log Y ) is the de Rham complex of X/S with logarithmic singularities along Y .

We can now define connections as before.

Definition. Suppose E is a quasi-coherent OX -module. An S-connection on E with logarithmic singularities
along Y is a homomorphism of abelian sheaves

∇ : E → E ⊗OX
Ω1

X/S(log Y )

satisfying the Liebniz rule.
Let MC(X/S, log Y ) be the category whose objects are quasicoherent sheaves on X with a S-connection

having logarithmic singularities along Y , and with morphisms the horizontal morphisms.

As usual, a connection with logarithmic singularities can be extended to maps

∇ : E ⊗OX
Ωp

X/S(log Y ) → E ⊗OX
Ωp+1

X/S(log Y ).

Definition. A connection with logarithmic singularities is integrable if E ⊗OX
Ω•

X/S(log Y ) is a complex. In

such a case, this complex is called the de Rham complex of (E ,∇) with logarithmic singularities along Y .
Let MCint(X/S, log Y ) be the full subcategory of MC(X/S, log Y ) consisting of sheaves with integrable

connections.
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As before,MCint(X/S, log Y ) is an abelian category that has enough injectives and contains a tensor product
and (not everywhere defined) internal Hom.

Consider the sheaf of π−1(OS)-Lie algebras on X given by

TX/S(log Y ) := HomOX
(ΩX/S(log Y ),OX).

It is clear that for U an open affine adapted to Y , we have

TX/S(log Y ) = OU (x1∂x1)⊕ · · · ⊕ OU (xr∂xr )⊕OU∂xr+1 ⊕ · · · ⊕ OU∂xn ,

where {∂xi
} is dual to {dxi}. Moreover, as before, one sees that the data of an integrable S-connection on E

with logarithmic singularities along Y is the same as the data of an OX -linear map

∇ : TX/Y (log Y ) → Endπ−1OS
(E)

that is also a morphism of sheaves of π−1OS-Lie algebras, satisfying Liebniz rule on local sections.
Again, we can define de Rham and Hodge cohomology with logarithmic singularities as before:

Hp
dR,log Y (X/S) := Hi

(
RΓ(X,Ω•

X/S(log Y ))
)

Hp
dR,log Y (X/S) := Riπ∗

(
Ω•

X/S(log Y )
)

Hp,q
Hodge,log Y (X/S) := Rqπ∗(Ω

p
X/S(log Y ))

Here, Hp
dR,log Y (X/S) is sheaf on S, and as before can be endowed with a Gauss-Manin connection. These are

of course right-derived functors of the corresponding functor for p = 0.
More generally, as in Remark 2.40, suppose X → S is a smooth morphism over a base-scheme T such that

S → T is also smooth, and i : Y ↪→ X is a divisor with normal crossings relative to T . We then have the functor

Hp
dR,log Y (X/S,−) :MCint(X/T, log Y ) →MCint(S/T, log Y )

that sends (E ,∇) to the shead Rqπ∗
(
E ⊗OX

Ω•
X/S(log Y )

)
endowed with the Gauss-Manin connection.

We also have the analog of Proposition 2.38.

Proposition 4.1. In addition to the assumptions at the beginning of the section, suppose Y is Noetherian.

1. There is a non-empty open V ⊂ S such that each of the coherent sheaves Hp,q
Hodge,log Y (X/S) and Hp

dR(X/S)
(for p, q ≥ 0) are locally free over V .

2. If S is of characteristic 0, then we may take V = S.

3. Suppose further that all the Hodge and de Rham cohomology sheaves are locally free. Suppose g : S′ → S
is any morphism, and let X ′ := X ×S S

′. Let Y ′ be the fibre product of i : Y ↪→ X and the canonical
projection X ′ → X. Then, Y ′ is a divisor in X ′ with normal crossings relative to S′, and the canonical
morphisms

g∗Hp,q
Hodge,log Y (X/S) → Hp,q

Hodge,log Y ′(X
′/S′) and g∗Hm

dR,log Y (X/S) → Hm
dR,log Y ′(X ′/S′)

are isomorphisms for all p, q,m ≥ 0.

For S characteristic 0 and π : X → S proper and smooth, the canonical morphism of complexes of sheaves
on X

Ω•
X/S(log Y ) → j∗Ω

•
(X−Y )/S

is in fact a quasi-isomorphism in the derived category. In particular, we have isomorphisms

Hi
dR,log Y (X/S)

∼= H∗
dR((X − Y )/S)

of de Rham cohomology sheaves on S. Thus, de Rham cohomology with logarithmic singularities along Y is
only really interesting in positive characteristic.
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4.2 Logarithmic Singularities for Positive Characieristic

Let us now suppose that all of our schemes are of characteristic p.

Definition. Suppose n ≥ 1. An object (E ,∇) ∈ MCint(X/S, log Y ) is nilpotent with exponent ≤ n if there
exists a filtration of E of length ≤ n whose associated graded objects all have p-curvature 0.

A sheaf with connection is nilpotent if it is nilpotent with exponent ≤ n for some n ≥ 1.
Let Niln(X/S, log Y ) be the full subcategory of MCint(X/S, log Y ) consisting of nilpotent sheaves with

exponent ≤ n. Let Nil(X/S, log Y ) be the full subcategory of nilpotent sheaves.

As before, one can check that Gauss-Manin connections are nilpotent, and that one can explicitly compute
the exponent of nilpotence (see [Kat70b, Theorem 6.1]).

The Cartier isomorphism also extends as expected.

Proposition 4.2. The (unique) Cartier isomorphism

C−1 : Ωp
(X(p)−Y (p))/S

∼−→ Hq(F(X−Y )/S,∗Ω
•
(X−Y )/S)

induces an isomorphism of OX(p)-modules

C−1 : Ωp
X(p)/S

(log Y (p))
∼−→ Hq

(
FX/S,∗Ω

•
X/S(log Y )

)
.

The Cartier isomorphism yields the following result, as before.

Proposition 4.3. Suppose S is such that FS : S → S is flat. Then, the conjugate spectral sequence can be
rewritten as

Ep,q
2 = F ∗

S

(
Rqπ∗Ω

q
X/S(log Y )

)
⇒ Hp+q

dR,log Y (X/S).

If hY (m) denotes the number of i such that F ∗
S

(
Riπ∗Ω

m−i
X/S (log Y )

)
̸= 0, then for any smooth base S → T we

have
Hm

dR,log y(X/S) ∈ NilhY (n)(S/T ),

where as usual we equip the de Rham cohomology sheaves with the Gauss-Manin connection.

We also have the following analog of Proposition 3.13, which is in some sense a corollary of the preceding
result.

Proposition 4.4. Suppose, in addition to the assumptions listed at the beginning of the section, that π : X → S
is proper and S is connected. Suppose also that X and S are smooth over a global affine variety T . Assume that
all the coherent sheaves Hp,q

Hodge,log Y (X/S) and Hm
dR,log Y (X/S) are locally free on S. For each integer m ≥ 0,

let hY (m) denote the number of integers i such that Hi,m−i
Hodge,log Y (X/S) is non-zero. Then, Hm

dR,log Y (X/S) with
the Gauss-Manin connection is globally nilpotent of exponent hY (m) on S/T .

4.3 Monodromy

The idea of monodromy is simple: by probing with loops and seeing what changes as we move around the
loop, we learn more about the underlying space. More precisely, if X is a path-connected and locally simply
path-connected topological space, then we have the following proposition.

Proposition 4.5. The functor F → Fx0 is an equivalence of categories between the category of complex local
systems on X and the category of complex finite-dimensional representations of π1(X,x0).

What is this representation? Suppose α : [0, 1] → X is a path. Then, α∗F is a constant sheaf on [0, 1],
and so α induces an isomorphism [α] : Fα(0) → Fα(1). This isomorphism only depends on the homotopy class
of α. In particular, if α is a loop, we get an automorphism of the vector space Fx0

, which then yields the
representation π1(X,x0) → Aut(Fx0).

By Riemann-Hilbert, it thus follows that sheaves with connections carry representation theoretic information
about the underlying space X. This version of monodromy is closely linked to differential equations. See for
instance Example 4.15 and the local monodromy theorem. For a good discussion of this in the analytic setting,
see [Del70].
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4.4 Regular Singular Points

We now need to briefly discuss the theory of regular singular points, in order to discuss local monodromy. For
this, we suppose that k is a field of characteristic 0, and that K = k(C) is the function field of a projective
smooth absolutely irreducible curve C over k. By [Har77, Theorem II.8.6A], ΩK/k is a 1 dimensional vector
space over K.

Definition. Suppose W is a finite dimensional vector space over K. A k-connection ∇ on W is an additive
mapping ∇ :W → Ω1

K/k ⊗K W satisfies ∇(fw) = df ⊗ w + f∇w for f ∈ K,w ∈W .

As usual, a k-connection on W is the same as the data of a K-linear mapping ∇ : Der(K/k) → Endk(W )
satisfying the Liebniz rule. Such a mapping is necessarily a Lie algebra homomorphism since Ω2

K/k = 0.

As before, we can define the abelian category MC(K/k) of finite dimensional vector spaces W over K
equipped with a k-connection, where the morphisms are the horizontal K-linear maps. This category also has
an internal Hom and a tensor product, the construction of which is analagous to that given in Section 2.6.

How does this relate to the previous notion of connections on sheaves over schemes? Suppose S is a sufficiently
nice scheme over k (with k of characteristic 0), and f : X → S a smooth morphism of relative dimension 1
whose generic fibres are geometrically connected. Let K be the function field of X. Then, we have the following
diagram

SpecK X

Spec k S

f

η′

η

where η and η′ are inclusions of the generic point. This diagram induces the inverse image functor

MCint(X/S) →MCint(SpecK/Spec k) =MC(SpecK/Spec k).

Suppose (V,∇) ∈ MCint(X/S), with E only quasi-coherent for now. Then, under the pull-back, we get a
K-vector space V (recall that a quasi-coherent sheaf on SpecK is the same as a K-vector space). In order to
ensure that V is finite-dimensional, we need to assume that E is locally free of finite rank. If that is the case,
the one sees easily that V with the connection induced by the pull-back satisfies the above definitions. In fact,
MC(K/k) ⊂MC(SpecK/Spec k) is the full subcategory of finite rank (equivalently, coherent) sheaves.

Now, let p be a place of K/k, i.e. a closed point of C. Let Op be the local ring, mp the maximal ideal,
and let ordpK → Z∪ {∞} be the associated valuation of the order of zero at p. Consider the Op-submodule of
Der(K/k) given by

Derp(K/k) = {D ∈ Der(K/k) : D(mp) ⊂ mp}.

Lemma 4.6. If f ∈ K∗ is not a unit at p (i.e. ordpf ̸= 0), then f d
df is an Op-basis for Derp(K/k).

Definition. Let (W,∇) ∈ MC(K/k). Say that (W,∇) has a regular singular point at p if there exists an
Op-lattice Wp of W such that

Derp(K/k) ·Wp ⊂Wp.

In elementary terms, p is a regular singular point of (W,∇) if there exists a K-basis e = (e1, ..., em) such
that, for some (equivalently any) uniformising parameter h at p, one has

∇(h d
dh ) · e = eB

for some B ∈Mn(Op).

Remark 4.7. Suppose V is a coherent sheaf of OC-modules, where C is the nice curve over k with function field
K. Suppose we have a flat connection on V. Taking the fibre at the generic point, we get a K-vector space V
with k-connection. As far as I can tell, having a regular singular point at a closed point p ∈ C means that the
connection on V has a regular singular point at p. This notion essentially means that the ODE defined by the
connection has a regular singular point at p, i.e. the solution has a pole of certain bounded order, so that there
are still ‘enough’ independent meromorphic solutions to the ODE in a neighbourhood of p.

In some sense, the requirement that Derp(K/k) = K · y d
dy (for y ∈ K∗ \ O∗

p) preserves a lattice in Wp is
supposed to encode that the order of poles are nice enough.

The property of having a regular singular point at p is nice.

Proposition 4.8. Suppose p is a place of K/k.
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1. If 0 → (V,∇′) → (W,∇) → (U,∇′′) → 0 is an exact sequence in MC(K/k). Then (W,∇) has a regular
singular point at p if and only if both (V,∇′) and (U,∇′′) have a regular singular point at p.

2. The full subcategory of MC(K/k) consisting of those (W,∇) having a regular singular point at p is stable
under taking internal Homs and tensor products.

Definition. Say that (W,∇) is cyclic if there is a vector w ∈ W such that for some (hence any) non-zero
derivation D ∈ Der(K/k), the set {∇i

Dw : i ≥ 0} spans W over K.

Since ∇ satisfies the Liebniz rule, one can check that the K-span of {∇i
Dw : i ≥ 0} is independent of

D ∈ Der(K/k), and so defines a Der(K/k)-invariant subspace of W .

Lemma 4.9. Suppose (W,∇) ∈MC(K/k). Then (W,∇) has a regular singular point at p if and only if every
cyclic subobject of (W,∇) has a regular singular point at p.

There are various other necessary and sufficient conditions on (W,∇) for it to have a regular singular point
at p. Some of these conditions are explicit conditions on a matrix for the connection with respect to a given
base, and are thus very handy for explicit computation. See [Kat70b, Section 11] for more.

Now, suppose L is a finite extension of K. Then, there is a natural ‘inverse image’ functor

MC(K/k) →MC(L/k), (W,∇ :W →W ⊗K ΩK/k) 7→ (W ⊗K L,∇⊗ L :W ⊗K L→ (W ⊗K L)⊗L ΩL/k).

Here, we need to use the fact that ΩL/k
∼= ΩK/k ⊗K L (see [Har77, Proposition II.8.4A]). We also have another

functor, the ‘direct image’ functor
MC(L/k) →MC(K/k)

that takes (W,∇) ∈MC(L/k) to W regarded as a K-vector space, and that takes ∇ to ∇|Der(K/k).

Proposition 4.10. Suppose F → K → L is a tower of function fields over k, with L/F a finite extension. Let
p be a place of L/k, and let the corresponding place of K/k (resp. F/k) be p′ (resp. p′′). Let also p′1, ..., p

′
r be

all the places of K/k lying over the place p′′ of F/k. Suppose (W,∇) ∈MC(K/k).

1. (W,∇) has a regular singular point at p′ if and only if the inverse image of (W ⊗K L,∇⊗ L) of (W,∇)
in MC(L/k) has a regular singular point at p.

2. The direct image of (W,∇) in MC(F/k) has a regular singular point at p′′ if and only if (W,∇) has a
regular singular point at each of the places p′i of K/k lying over p′′.

Corollary 4.10.1. Suppose k is an algebraic closure of k, and let p be the place of Kk/k induced by the place
p of K/k. Suppose (W,∇) ∈ MC(K/k), and let (Wk,∇k) be its inverse image in MC(Kk/k). Then (W,∇)
has a regular singular point at p if and only if (Wk,∇k) has a regular singular point at p.

4.5 Monodromy Around a Regular Singular Point

We start with the following theorem of Manin. The setup is the same as before, i.e. K/k is a function field of
a curve, with k characteristic 0. We suppose p is a place of K/k.

Theorem 4.11 ([Kat70b, Theorem (12.0)]). Suppose p is a rational place of K/k, i.e. the residue field at p is
k. Suppose (W,∇) ∈MC(K/k) has a regular singular point at p. Let t denotes a uniformising parameter at p,
and let e is a K-basis of W such that the corresponding Op-lattice spanned by e is preserved by ∇t d

dt
. Write

∇t d
dt

· e = e ·B

for B ∈Mn(Op). Let the reduction modulo mp be B(p) ∈Mn(k).
Suppose all eigenvalues of B(p) are in k. Then:

• The set of images in the additive group k/Z of the eigenvalues of B(p) is independent of the above choice
of basis e.

• The non-equal eigenvalues (which only depend on p and (W,∇)) do not differ by integers. More precisely,
fix a set-theoretic section φ : k/Z → k of the projection mapping k → k/Z. Then, there exists a unique
Op-lattice Wp of W , stable under ∇t d

dt
, and there is a basis e′ of Wp such that, writing

∇t d
dt

· e = e · C

for C ∈Mn(Op), all eigenvalues of C(p) ∈Mn(k) are fixed by the composition k → k/Z φ−→ k.
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• The k-space Ŵp =Wp ⊗Op
Ôp (with Ôp the mp-adic completion of Op) admits a base ê in terms of which

the conneciton is simply
∇t d

dt
ê = C(p) · ê.

Here, recall that for k characteristic 0, the projection Op → k to the residue field has a canonical section

k ↪→ Op, and so we can think of C(p) ∈Mn(Ôp).

Definition. In the above theorem, the image in the additive group k/Z of the eigenvalues of B(p) are called
the exponents of (W,∇) at p.

Remark 4.12. If we require the set-theoretic section φ : k/Z → k to send the coset Z to 0 ∈ k, and if B(p)
has all of its eigenvalues in Z (i.e. the exponents of (W,∇) at p are zero modulo Z), then the matrix C(p) is
nilpotent.

Remark 4.13. More generally, we can write C(p) = D +N where D is semi-simple, N is nilpotent, and D and
N commute (this is the Jordan decomposition). Then, the conjugacy class of N is independent of the choice of
p. By definition, note that the eigenvalues of D modulo Z are the exponents of (W,∇) at p.

Remark 4.14. To see how this is related to monodromy around the point p, see [Kat70b, Remark 12.3].

Definition. Suppose p is rational and (W,∇) ∈ MC(K/k) as a regular singular point at p. Say that the local
monodromy at p is quasi-unipotent if the exponents at p are in Q/Z ⊂ k/Z. We say that the local monodromy
at p is unipotent if all the exponents at p are integers.

If the local monodromy at p is quasi-unipotent, then say that its exponent of nilpotence is ≤ n if, writing
C(p) = D +N , we have Nn = 0.

For p any place of K/k (not necessarily rational) at which (W,∇) has a regular singular point, then say
that the local monodromy at p is quasi-unipotent (resp. quasi-unipotent with exponent of nilpotence ≤ n) if the
corresponding property holds true for the induced place p after change of base to Kk/k.

Example 4.15. Let k = C and K = C(z) (so that the curve is the Riemann sphere). Then ΩK/k = C(z) · dz and
so Der(K/k) = C(z) · ∂z, where ∂z is the usual derivative of a rational function in z.

Now suppose W = C(z)e1 + C(z)e2, and the connection is defined to act as

∇∂z
e1 = −e2 and ∇∂z

e2 = −1
z e2.

Consider the place p : z = 0, so that Derp(K/k) = C(z) · z∂z. We have

∇z∂z

(
e1
e2

)
=

(
0 −z
0 −1

)(
e1
e2

)
.

One checks that p is a regular singular value of (W,∇) (in fact, every place of C(z)/C is a regular singular value,
and apart from z = 0 every place is not even singular). Notice that the exponents of p are integers (i.e. are 0
in C/Z), and that B(p) =

(
0 0
0 −1

)
.

Let us check monodromy. A basis of horizontal sections (i.e. a solution ∇e = 0) is given by v1 = ze2 and
v2 = 1

2πi (e1 + z log ze2) (this latter function is multi-valued). Notice that going around z = 0 (in the analytic
topology) sends v1 to v1 and sends v2 to v2 + v1.

If we pick the section φ : C/Z → C mapping Z to 0, then the unique Op-lattice guaranteed by the theorem
is the Op-span of e′1 = e1 and e′2 = −ze2. In terms of this basis, we have

∇z∂z

(
e′1
e′2

)
=

(
0 1
0 0

)(
e′1
e′2

)
.

It is now clear that the exponent of nilpotence is 2.

Proposition 4.16. Let F → K → L be a tower of functions fields over k. Let p be a place of L/k, p′ the
induced place of K/k, and p′′ the induced place of F/k. Let (W,∇) be an object of MC(K/k) that has regular
singular points at every place of K/k above p′′. Suppose n ≥ 1.

1. The inverse image (W ⊗K L,∇ ⊗ L) of (W,∇) in MC(L/k) (which has a regular singular point at p),
has quasi-unipotent local monodromy at p of exponent of nilpotence ≤ n if and only if (W,∇) has quasi-
unipotent local monodromy at p′ of exponent of nilpotence ≤ n.

2. The direct image of (W,∇) in MC(F/k) has quasi-unipotent local monodromy at p′′ of exponent of nilpo-
tence ≤ n if and only if (W,∇) has quasi-unipotent local monodromy of exponent of nilpotence ≤ n at
every place of K/k lying over p′′.
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The significance of regular singular points comes from the following theorem of Katz. To set up this theorem,
let S be a global affine variety, and f : X → S a smooth morphism of relative dimension 1 whose generic fibres
are geometrically connected. Let k denote the function field of S and K the function field of X. Recall from
the previous section that an object (V,∇) ∈MCint(X/S) that is locally free of finite rank yields, via pullback,
an object (V,∇) ∈MC(K/k).

Theorem 4.17 ([Kat70b, Theorem (13.0)]). Suppose we are in the above setup, with (V,∇) ∈ MCint(X/S)
locally free of finite rank. Let (V,∇) be the corresponding object in MC(K/k) obtained via pull-back.

1. Suppose that (V,∇) is globally nilpotent on X/S. Then (V,∇) has a regular singular point at every place
of K/k, and moreover has quasi-unipotent local monodromy at every place of K/k.

2. Suppose that (V,∇) is globally nilpotent of exponent n ≥ 1 on X/S. Then (V,∇) has quasi-unipotent local
monodromy of exponent ≤ n at every place of K/k.

4.6 Regular Sheaves and the Local Monodromy Theorem

Suppose X is a smooth scheme of finite type over a field k of characteristic 0. Let X∗ be a smooth proper
scheme of finite type over k such that j : X ↪→ X∗ as an open dense subscheme. Let Y = X∗ \X be a divisor
with normal crossings in X∗. We think of Y as being ‘at ∞’.

First suppose that X is a curve, so that Y is a finite collection of points. Let X be the completion of the
curve X (cf. [Har77, Section I.6]). It is a smooth projective curve over k, and moreover it has the property that
the normalization of any smooth proper X∗ containing X as an open dense subscheme is an open subscheme of
X. Let (V,∇) be a coherent sheaf with connection on X, relative to k.

Definition. Suppose y ∈ X − X is a closed point, and let K = Frac(OX,y); then K is a function field of
transcendence degree 1 over k, and y induces a place py of K/k. Under the inverse image functor, (V,∇)
induces a K-vector space V with connection ∇K .

We say that (V,∇) is regular at y if (VK ,∇K) has a regular singular point at py.
We say that (V,∇) is regular if it is regular at every closed point y ∈ X −X.
Let S ⊂ Y = X∗ − X. The normalization of X∗ is an open subscheme U of X; let ϕ : U → X∗ be the

canonical normalization map. We say that (V,∇) is regular at (all points in) S if the pull-back of (V,∇) under
ϕ is regular at every point in ϕ−1(S).

Let us now go back to the general case of X a smooth scheme of finite type over k.

Definition. Let (E ,∇) be a coherent sheaf with connection on X, relative to k. The sheaf with connection
(E ,∇) is said to be regular if for every smooth locally closed curve f : C ↪→ X, the pull-back of (E ,∇) under f
is regular.

We have some basic properties:

Proposition 4.18. Let X be as above.

1. If 0 → V ′ → V → V ′′ → 0 is a horizontal exact sequence of coherent sheaves with integrable connections
on X (the morphisms must all be horizontal), and if V ′ and V ′′ are regular, then V is regular.

2. If V1 and V2 are coherent sheaves with regular flat connections, then V1 ⊗ V2, Hom(V1,V2), V∨
1 , etc. are

all regular.

3. Suppose f : X → X1 is a morphism of smooth k-schemes of finite type, and let V ∈ MCint(Y/k). If V
is regular then so is f∗V. Conversely, if f∗V is regular and f is a dominant map of schemes, then V is
regular.

The importance of regularity comes from the following result. (cf. [Del70, Théorème 5.9]).

Theorem 4.19. Suppose X is smooth and finite type over k = C. Then, the functor V → Van gives an
equivalence between the category of coherent sheaves on X with regular integrable connection, and the category
of holomorphic vector bundles on Xan endowed with an integrable connection.

In particular, we can transport Riemann-Hilbert to the algebraic setting. Moreover, there are various
comparison theorems between the cohomology of the local system on the corresponding analytic space, and
the de Rham cohomology of the original regular flat sheaf on X. See [Del70, Section 6] for more detail. For
instance, we have the following result.
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Proposition 4.20. Suppose X∗ is a smooth scheme of finite type over C, Y a normal crossing divisor on X,
V a vector bundle on X∗, and ∇ a regular integrable connection on the restriction of V to X = X∗ − Y , with
logarithmic singularities along Y . Suppose that the connection ∇ is not unipotent at any point in Y . Then, if
V is the local system defined by Van on Xan, we have

Hp
(
RΓ(X∗,Ω•

X/C(log Y )⊗ V)
) ∼= Hp(Xan, V ).

It also turns out that regular sheaves on X have canonical extensions to X∗ (cf. [Kat70a, Section II-III]).

Theorem 4.21. Suppose (V,∇) is a regular flat coherent sheaf on a smooth C-scheme X. Let X∗ be any proper
smooth C-scheme with Y = X∗−X a normal crossings divisor. Let j : X ↪→ X∗ be the open immersion. Then,
there exists a pair (V,∇) consisting of a locally free sheaf V on X∗ such that j∗V ∼= V, and a homomorphism
∇ of abelian sheaves

∇ : V → V ⊗OX∗ ΩX∗/C(log Y )

extending ∇ : V → V ⊗OX
ΩX/C.

The Gauss-Manin connections are regular.

Theorem 4.22 ([Del70, Théorème 7.9]). Let f : X → S be a smooth morphism between smooth schemes of
finite type over C such that there exists a proper smooth S-scheme X∗ containing X as an open S-subscheme
with X∗ −X a normal crossings divisor.

If V is a coherent sheaf on X with a regular integrable connection, then the Gauss-Manin connection on
RifI(Ω

•
X/S ⊗OX

V) is also regular.

Since the Gauss-Manin connection is regular, we can ask whether the local monodromy is quasi-unipotent.
This is the content of the Local Monodromy Theorem.

Theorem 4.23 (Local Monodromy Theorem). Let S/C a smooth connected curve, K/C its function field, and
π : X → S a proper smooth morphism. Let XK/K be the generic fibre of π.

For each m ≥ 0, let h(m) denote the number of pairs (p, q) such that p+ q = m and

hp,q(XK/K) := dimK Hq(XK ,Ω
p
XK/K) = rankOS

Rqπ∗Ω
p
X/S

is non-zero. Then, the K-space Hi
dR(XK/K) with the Gauss-Manin connection (equivalently, the inverse image

of Hi
dR(X/S) with the Gauss-Manin connection) in MC(K/C) has regular singular points at every place of

K/C and has quasi-unipotent local monodromy with exponent of nilpotence ≤ h(i).

This theorem can be generalized to Deligne’s open local monodromy theorem. To set this up, let K/C be a
function field of a smooth connected curve S/C, and let π : U → SpecK a smooth morphism. Then, it is a fact
that there exists a finite extension L/K, a proper smooth morphism ρ : X → SpecL, and a divisor i : Y ↪→ X
with normal crossings relative to SpecL, such that the morphism

πL : U ×K L→ SpecL

is the morphism
ρX−Y : X − Y → SpecL.

Notice that
Hi

dR,log Y (X/L) = Hi
dR((X − Y )/L) = Hi

dR(U ×K L/L) = Hi
dR(U/K)⊗K L.

We get the following result.

Theorem 4.24 (Deligne’s Open Local Monodromy Theorem). In the setup given above, let hY (m) denote the
number of pairs (p, q) such that p+ q = m and

hp,qY (XK/K) := dimLH
q(X,Ωp

X/L(log Y ))

is non-zero. Then, the object of MC(K/C) given by Hi
dR(U/K) (with the Gauss-Manin connection) has regular

singular points at every place of K/C, and at each place the local monodromy is quasi-unipotent with exponent
of nilpotence ≤ hY (i).

We have yet another monodromy theorem by Brieskorn (see [Del70, p. III.2]).

Theorem 4.25. Suppose S is a smooth projective curve of finite type over C. Let S = S − T where T is
some finite set of points. Suppose f : X → S is any smooth morphism of C-schemes. Suppose that Rif∗C
is a local system on S. Then, the integrable coherent sheaf on S corresponding to Rif∗C is regular, and has
quasi-unipotent local monodromy at every point on S − S.
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5 Intersection Theory and Characteristic Classes

We will mostly be following [Sta23, Tag 02P3] (for all proofs consult loc. cit.). Chapter 7 of [Bau15] and
Appendix A of [Har77] are good short references as well. [Vai12] has a lot of exercises and examples. Of course,
the canonical reference is Grothendieck’s [Gro58].

Throughout, we will be working with schemes X locally of finite type over a locally Noetherian ‘universally
catenary’ base scheme S equipped with a dimension function δ : S → Z. For concreteness, it suffices to take S
to be (the Spec of) a field or a Dedekind domain, or to be a scheme locally of finite type over a field or Dedekind
domain. In any of these cases, we have a well-defined notion of dimension of a closed integral subscheme of X
relative to S, written dimS(−).

We will constantly be using the following two facts about integrality of schemes:

• A scheme is integral if and only if it is reduced and irreducible.

• Every integral scheme has a unique generic point.

Let us also fix some notation. For any closed integral subscheme Y of X with corresponding unique generic
point ηY , we can consider the stalk OX,ηY

of OX at ηY . This is the local ring of Y in X, denoted simply by
OX,Y . The function field of Y , denoted κ(Y ), is the stalk OY,ηY

of OY at ηY . Notice that OX,Y ↪→ κ(Y ) via
pull-back induced by the closed immersion Y ↪→ X.

5.1 Algebraic Cycles

Suppose X is a scheme locally of finite type over S.

Definition. A k-cycle on X is a formal sum
∑

Z nZ [Z] where nZ ∈ Z, the sum ranges over all integral closed
subschemes Z of dimension k over S, and the collection {Z : nZ ̸= 0} is locally finite in X.

The group Zk(X) of cycles of dimension k is the abelian group of k cycles on X. The group of cycles is the
graded group Z∗(X) =

⊕
k Zk(X).

Remark 5.1. Note that cycles are formal infinite sums. If X is quasi-compact, then all cycles are formal finite
sums, and Zk(X) is simply the free abelian group generated by all closed integral dimension k subschemes of
X.

Remark 5.2. We also write Zk(X) = ZdimS X−k(X) to be the cycles on X of codimension k; this tacitly assumes
that every irreducible component of X has the same dimension. The advantage of this notation is that we don’t
have to write down ‘dimS X’ everywhere. We will switch freely between these two notations.

Example 5.3. If X is irreducible, then Z0X ∼= Z · [X].

Example 5.4. If X = An
k , then Z

1An
k
∼= k(x1, ..., xn)

×/k×.

Suppose Z is a closed subscheme of X and Z ′ an irreducible component of Z. Then OZ,Z′ is a OX,Z′ -module,
which turns out to be of finite length if X is locally of finite type.

Definition. Suppose Z is a closed subscheme of X of dimension k (i.e. all of its irreducible components have
dimension at most k over S). The k-cycle associated to Z is

[Z]k =
∑
Z′

lengthOX,Z′OZ,Z′ · [Z ′],

the sum running over all irreducible components Z ′ of Z such that dimS Z
′ = k.

We can also associate a cycle to a coherent sheaf. In this definition, we write ηZ for the generic point of a
closed integral scheme Z.

Lemma-Definition. Suppose F is a coherent OX -module on X, such that the support supp(F) of F has
dimension at most k. Then, the formal sum

[F ]k :=
∑
Z

lengthOX,Z
FηZ

· [Z],

the sum running over all irreducible components Z of supp(F) with dimS Z = k, is a k-cycle called the k-cycle
associated to F .

Example 5.5. Suppose Z is a closed subscheme of X of dimension at most k. Then [Z]k = [OZ ]k.
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The k-cycle associated to a coherent sheaf is additive over short exact sequences, i.e. if we have a short
exact sequence

0 → F → G → H → 0

of coherent sheaves such that the dimension of their support has dimension at most k, then [G]k = [F ]k + [H]k.
The group of cycles is functorial in X.

Lemma-Definition. Suppose f : X → X ′ is a proper k-morphism. Then, we have a homomorphism of abelian
groups f∗Zk(X) → Zk(X

′) by defining

f∗[Z] =

{
0 dimS f(Z) < k

[k(Y ) : k(f(Y ))] · [f(Y )] dimS f(Z) = k

for integral closed subschemes Z with dimS(Z) = k, and extending by linearity.
For Y a closed subscheme of X, this induces an injection of graded abelian groups Z∗(Y ) ↪→ Z∗(X).

Remark 5.6. Here, if dim f(Y ) = dimY , then the function field k(Y ) of Y is a finite extension of the function
field k(f(Y )) of f(Y ), and so the definition makes sense.

It turns out that proper pushforward of cycles coincides with the proper pushforward of coherent sheaves,
i.e. f∗[F ]k = [f∗F ]k.

We also have a pull-back functor going the other way. If f : X → X ′ is a morphism of S-schemes and
Z ↪→ X ′ a closed subscheme, write f−1(Z) for the closed subscheme Z ×X′ X of X.

Lemma-Definition. Suppose f : X → X ′ is a flat morphism of relative dimension r of schemes that are locally
of finite type over S.

If Z is a closed integral subscheme of X ′ of dimension k, then let f∗[Z] = [f−1(Z)]k+r. Extending via
linearity, we then have the flat pull-back morphism of abelian groups

f∗ : Zk(X
′) → Zk+r(X).

For U ⊂ Z an open immersion, the corresponding flat pullback (which is of relative dimension 0) yields a
surjection Zk(X) ↠ Zk(U)., the restriction to U map.

It turns out that flat pullback of cycles coincides with flat pullback of coherent sheaves, i.e. f∗[F ]k =
[f∗F ]k+r.

Proposition 5.7. Suppose X is locally of finite type over S, and let Y be a closed subscheme of X with
complement the open subscheme U = X − Y . Then, we have an exact sequence of graded abelian groups

0 → Z∗(Y ) → Zk(X) → Zk(U) → 0.

Proposition 5.8. Suppose we have a Cartesian square

X ′ X

Y ′ Y

ff ′

g′

g

⌟

of schemes locally of finite type over S. Suppose that f is proper and g flat of relative dimension r. Then f ′ is
proper, g′ is flat of relative dimension r, and we have

g∗ ◦ f∗ = f ′∗ ◦ (g′)∗.

5.2 The Chow Group

We now associate a cycle to a rational function. In short, we are taking the cycle associated to the divisor
divf . Let’s recall the procedure. Suppose Y is a closed codimension 1 integral subscheme of X. Then OX,Y is
a DVR, and so it makes sense to talk about orders of elements in its fraction field. If X is also integral, then
this fraction field coincides with the function field k(X) of X (this is the local ring at the unique generic point
of X). Hence, for X integral, we can define the valuation

ordY : k(X) → Z ∪ {∞}.
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Lemma-Definition. Fix f ∈ κ(X)∗. Then, the formal sum given by

divf = divXf :=
∑
Y

ordY (f) · [Y ]

where the sum is over all closed integral codimension 1 subschemes Y of X is a codimension 1 cycle on X, the
principal divisor associated to f .

Here are some properties of principal divisor function.

Proposition 5.9. Suppose X is locally of finite type over S.

1. divX : κ(X)∗ → Z1(X) is a homomorphism of abelian groups.

2. If p : X → X ′ is a dominant proper morphism, then

p∗ ◦ divX = divX′ ◦Normκ(X)/κ(X′).

3. If f : X → X ′ is a flat morphism of relative dimension r between integral schemes X and X ′, then

f∗ ◦ divY = divX ◦ f∗,

where we have the morphism f∗ : κ(X ′) → κ(X).

If V is a closed integral subscheme of X of dimension r, then the closed immersion V ↪→ X induces a map
Z∗(V ) ↪→ Z∗(X), and so we can define a r − 1-cycle divV f ∈ Zr−1(X) for any f ∈ k(V ).

Definition. Suppose 0 ≤ r ≤ dimX − 1. The group of r-cycles rationally equivalent to zero is the subgroup
Ratr(X) of Zr(X) generated by the divV f for all f ∈ k(V ) where V ranges over all closed integral subschemes
of X of dimension r + 1.

We also set RatdimX(X) = 0.

Definition. Suppose 0 ≤ r ≤ dimX. The r’th Chow group of X is the quotient

CHr(X) := Zr(X)/Ratr(X).

The Chow group CH∗(X) is the graded group

CH∗(X) :=
⊕
r

CHr(X).

Remark 5.10. The Chow group is meant to be an algebraic analog of the singular homology groups in topology.

Remark 5.11. We also have upper numbering notation for Chow groups, i.e. CHr(X) = CHdimX−r(X) is the
group of equivalence classes of codimension r cycles modulo rational equivalence.

Of course, CH0(X) = Z0(X).

Example 5.12. CHn−1(An
k ) = 0.

Example 5.13. CH∗(Pn
k )

∼= Z[ℓ]/ℓn+1. Here, ℓ stands for the class of the cycle corresponding to any line in Pn
k .

Example 5.14. If X is integral, then CH1(X) coincides with the Weil divisor class group of X.

The following are properties of the Chow group.

Proposition 5.15. Suppose X is locally of finite type over S.

1. Suppose f : X → X ′ is a proper morphism. Then f∗ sends Ratk(X) to Ratk(X
′), and thus descends to a

morphism of graded abelian groups
f∗ : CH∗(X) → CH∗(X

′).

2. Suppose f : X → X ′ is a flat morphism of relative dimension r. Then f∗ sends Ratk(X
′) to Ratk+r(X),

and thus descends to a morphism of abelian groups

f∗ : CHk(X
′) → CHk+r(X)

for all k ≥ 0.
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3. Suppose Y is a closed subscheme of X and U = X − Y its complement. Then, we have an exact sequence

0 → CH∗(Y ) → CH∗(X) → CH∗(U) → 0

of graded abelian groups.

4. Suppose f : X ′ → X is proper. Suppose also that for every closed point x ∈ X, there exists a point
x′ ∈ f−1(x) such that the field extension κ(x′)/κ(x) is trivial. Then, we have an exact sequence of graded
abelian groups

CH∗(X
′ ×X X ′)

p1,∗−p2,∗−−−−−−→ CH∗(X
′)

f∗−→ CH∗(X) → 0,

where p1, p2 : X ′ ×X X ′ → X ′ are the projections.

The Chow group behaves well with vector bundles. Recall that a vector bundle of rank n over X is a
scheme V equipped with a morphism p : V → X and an open covering {Ui} of Y with isomorphisms ψi :
p−1(Ui)

∼−→ An
Ui

such that for any i, j and for any open affine SpecA ⊆ Ui ∩ Uj , the automorphism ψj ◦ ψ−1
i of

An
V = SpecA[x1, ..., xn] corresponds to a linear automorphism of A[x1, ..., xn]. Here, an automorphism θ of the

polynomial ring A[x1, ..., xn] is linear if θ(a) = a for all a ∈ A, and for all i the θ(xi) is a linear homogeneous
polynomial in the x1, ..., xn. By [Har77, Exercise II.5.18], the category of rank n vector bundles over X is
equivalent to the category of rank n locally free sheaves on X. In fact, if V is a rank n locally free sheaf on X,
then

V = Spec
X
(Sym∗(V))

is the associated vector bundle, where Sym∗(V) :=
⊕

k≥0 V⊗k. The projection p : V → X is given by the

associated map OX
∼= V⊗0 ↪→ Sym∗(V).

It is easy to see that the projection map p : V → X of a rank n vector bundle is a flat morphism of relative
dimension n.

Proposition 5.16. If V is a vector bundle of rank r on X with projection map p : V → X, then the map

p∗ : CHk(X) → CHk+r(V )

is an isomorphism for all k ∈ Z.

5.3 The First Chern Class

Suppose X is an intgeral scheme locally of finite type over S. Let L be an invertible OX -module, and let s be
any non-zero meromorphic section of L. Then, at any point x ∈ X, the germ of s at x is of the form fsx for sx
a generator of Lx

∼= OX,x and f ∈ κ(X)∗. Up to multiplication by a unit in OX,x, this f is unique. Hence, if
Z is a codimension 1 closed integral subscheme with generic point η, then upon taking x = η above it makes
sense to write

ordZ,L(s) := ordOX,η
(f).

Definition. With the set up as above, the Weil divisor associated to s is

divL(s) =
∑
Z

ordZ,L(s) · [Z] ∈ Z1(X),

where the sum runs over all codimension 1 closed integral subschemes Z of X

It turns out that divL(s) is rationally equivalent to divL(s
′) for any non-zero meromorphic sections s, s′ of

L. Hence, the following definition makes sense.

Definition. With set up as above, the Weil divisor class of L on X is

c1(L) ∩ [X] := [divL(s)] ∈ CH1(X)

for any choice of non-zero meromorphic section s of L.

As usual, the Weil divisor class is compatible with pull-backs.

Lemma 5.17. Suppose X and X ′ are integral and f : X → X ′ is flat of relative dimension r. Then f∗(c1(L)∩
[X ′]) = c1(f

∗L) ∩ [X] as elements of CH1(X).

Using the Weil divisor class, we can define a homomorphism of Chow groups.
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Lemma-Definition. Suppose X is integral locally of finite type over S. Let L be an invertible OX -module.
For every integer k, there is a homomorphism of Chow groups

c1(L) ∩ − : CHk+1(X) → CHk(X)

which takes the class [W ] of a closed integral subscheme i :W ↪→ X with dimS W = k + 1 to

c1(L) ∩ [W ] = i∗
(
c1(i

∗L) ∩ [W ]
)

where c1(i
∗L) ∩ [W ] is the Weil divisor class of i∗↕ on W . This homomorphism is called the intersection with

the first Chern class of L.

Remark 5.18. It is actually not at all trivial to show that the above map Zk+1(X) → CHk(X) given by
[W ] 7→ i∗

(
c1(i

∗L) ∩ [W ]
)
and extended to all of Zk+1(X) by linearity actually factors through CHk+1(X).

The rough intuitive picture is that the first Chern class homomorphism gives the locus of where a general
section of a line bundle is zero. The intersection with first Chern classes satisfies a lot of nice properties.

Proposition 5.19. Suppose X is integral locally of finite type over S. Let L,L1,L2, ... be invertible OX-modules.
Fix k ∈ Z, and let α ∈ CHk+1(X).

1. c1(OX) ∩ − is the zero morphism.

2. (c1(L1) ∩ α) + (c1(L2) ∩ α) = c1(L1 ⊗OX
L2) ∩ α.

3. For f : X ′ → X a flat morphism of relative dimension r, we have f∗(c1(L) ∩ α) = c1(f
∗L) ∩ f∗α.

4. For f : X → X ′ a proper morphism, we have f∗(c1(f
∗L) ∩ α) = c1(L) ∩ f∗α.

5. As morphisms CHk(X) → CHk−2(X), we have

c1(L1) ∩ (c1(L2) ∩ −) = c1(L2) ∩ (c1(L1) ∩ −).

In particular, for s1 and s2 non-zero meromorphic sections of L1 and L2, we have

c1(L2) ∩ divL1(s1) = c1(L1) ∩ divL2(s2)

as elements of CH2(X).

5.4 Projective Bundles and Higher Chern Classes

To a locally free OX -module V of rank r, we can also associate the so-called projective bundle, given by

P(V) := Proj
X
(Sym∗(V) π−→ X.

Here, notice that Sym∗(V) is a graded OX -algebra so the relative Proj makes sense. The map π corresponds to
the usual inclusion OX ↪→ Sym∗(V), and is a projective (thus proper) map. It is also flat of relative dimension
r − 1. For any open affine U = SpecA of X, the subscheme π−1(U) of P(V) is (essentially by definition) the
projective scheme ProjSym∗(V)(U) where Sym∗(V)(U) is a graded A-algebra. In particular, it is canonically
equipped with an invertible sheaf Oπ−1(U)(1). These invertible sheaves glue to give an invertible sheaf OP(V)(1).
This sheaf satisfies

π∗(OP(V)(1)) = V,
and so is there is a surjection π∗V ↠ OP(V)(1). If Y is a X-scheme with structure map g : Y → X, a X-
morphism Y → P(V) is the same as an invertible sheaf L on Y and a surjective map g∗V → L of sheaves on Y .
See [Har77, Section II.7] for more details on projective bundles.

We have the following formula associated to a projective space bundles.

Proposition 5.20 (Projective Space Bundle Formula). Suppose X is locally of finite type over S and V a
locally free OX-module V of rank r. Let π : P = P(V) → X be the associated projective bundle with associated
twisting sheaf OP (1). Then, the map

(α0, ..., αr−1 7→ π∗α0 + c1(OP (1)) ∩ π∗α1 + · · ·+ c1(OP (1))
r−1 ∩ π∗αr−1

gives an isomorphism
r−1⊕
i=0

CHk+i(X)
∼−→ CHk+r−1(P )

for all k ∈ Z. Here, by c1(L)i ∩ (−) we mean the i’th iterate of c1(L) ∩ (−).
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This formula in fact allows us to formulate the following definition.

Definition. Suppose X is integral and locally of finite type over S. Let V be a rank r locally free sheaf on X
with associated projective space bundle π : P → X with twisting sheaf OP (1).

By the projective space bundle formula, there exist elements ci ∈ CHi(X) for 0 ≤ i ≤ r such that c0 = [X],
and

r∑
i=0

(−1)ic1(OP (1))
i ∩ π∗cr−i = 0.

We set ci(V) ∩ [X] := ci ∈ CHi(X), and call this the i’th Chern class of V on X.
The total Chern class of V is

c(V) ∩ [X] :=

r∑
i=0

ci(V) ∩ [X] ∈ CH∗(X).

As one would expect, for L an invertible sheaf, the above defined Chern class coincides with the previously
defined Chern class for L.

As with Chern classes of line bundles, we can define homomorphisms between Chow groups.

Lemma-Definition. Suppose V is a locally free sheaf of rank r on X. For every k ∈ Z and every 0 ≤ j ≤ r,
we have a homomorphism of abelian groups

cj(V) ∩ − : CHk(X) → CHk−j(X)

satisfying
cj(E) ∩ [Z] := i∗(cj(i

∗E) ∩ [Z]) ∈ CHk−j(X)

for any integral closed subscheme i : Z ↪→ X, and extended to the entire Chow group by linearity. The above
homomorphism is called the intersection with the j’th Chern class of E .

Intersecting with the j’th Chern class satisfies all the usual properties one would expect.

Proposition 5.21. Suppose X and V are as before.

1. If p : X → X ′ is a proper morphism and α ∈ CH∗(X), then

p∗(cj(p
∗E) ∩ α) = cj(E) ∩ p∗(α).

2. If f : X ′ → X is a flat morphism of fixed relative dimension and α ∈ CH∗(X), then

f∗(cj(E) ∩ α) = cj(f
∗E) ∩ f∗(α).

3. If V ′ is another locally free OX-module on C of finite rank, then for all α ∈ CHk(X) we have

ci(V) ∩ (cj(V ′) ∩ α) = cj(V ′) ∩ (ci(V) ∩ α) ∈ CHk−i−j(X).

4. We have ci(V∨) = (−1)ici(V) for all i.

5.5 The Chow Cohomology Ring

In order to better talk about Chern classes, and in particular to talk about polynomial relations and so on,
we need to introduce the Chow cohomology ring. This ring is essentially a graded ring of morphisms of Chow
groups satisfying certain properties. In order to formulate one of the properties, we need to first talk about
Gysin maps. Throughout, as usual, we suppose X is locally of finite type over S.

Lemma-Definition. Let L be an invertible sheaf on X and s ∈ Γ(X,L) a global section. Let Z be the zero
scheme of s, and denote i : Z ↪→ X the corresponding closed immersion. Then, for every integer k, there is a
unique homomorphism

i∗ : CHk+1(X) → CHk(Z)

such that, for any integral closed subscheme W with dimS W = k + 1, we define

i∗[W ] := [Z ∩W ]k

as a k-cycle on Z if W ̸⊂ Z, and otherwise set

i∗[W ] = i′∗(c1(L|W ) ∩ [W ]

where i′ :W ↪→ Z is the corresponding closed immersion. This homomorphism corresponding to (L, s) is called
the Gysin homomorphism.
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This essentially extends the notion of pull-back to non-flat morphisms. We have the following properties.

Proposition 5.22. Suppose L is an invertible sheaf on X with global section s with vanishing locus Z, so that
we have the Gysin homomorphism i∗.

1. The composite i∗ ◦ i∗ : CHk(Z) → CHk−1(Z) is given by

α 7→ c1(i
∗L) ∩ α.

2. If N is another invertible |mcOX-module, then for any α ∈ CHk(X),

i∗(c1(N ) ∩ α) = c1(i
∗N ) ∩ i∗α

Proposition 5.23. Suppose L is an invertible sheaf on X with global section s with vanishing locus Z. Suppose
f : X ′ → X is a morphism, and set L′ := f∗L and s′ = f∗s. Then the vanishing locus Z ′ of s′ sits inside the
Cartesian square

Z ′ X ′

Z X.

fg

i′

i

⌟

We thus form the Gysin homomorphisms i∗ and (i′)∗.

1. If f is proper, then
i∗ ◦ f∗ = g∗ ◦ (i′)∗.

2. If f is flat of fixed relative dimension, then

(i′)∗ ◦ f∗ = g∗ ◦ i∗

We can now define the Chow cohomology groups.

Definition. A bivariant class c of degree p on X is a rule which assigns a map

c ∩ − : CHk(X
′) → CHk−p(X

′)

to every locally of finite type morphism f : X ′ → X and every k ∈ Z, satisfying the following conditions:

1. If g : X ′′ → X ′ is proper, then for all α′′ ∈ CH∗(X
′′),

c ∩ g∗α′′ = g∗(c ∩ α′′).

2. If g : X ′′ → X ′ is flat of fixed relative dimension and locally of finite type, then for all α′ ∈ CH∗(X
′),

c ∩ g∗α′ = g∗(c ∩ α′).

3. If L; is an invertible sheaf, s′ ∈ Γ(X ′,L′) with zero locus i : Z ′ ↪→ X ′, then for all α′ ∈ CH∗(X
′),

c ∩ (i′)∗α′ = (i′)∗(c ∩ α′).

The abelian group of all bivariant classes of degree p on X is denoted Ap(X).

We have an obvious bilinear associative composition map

◦ : Ap(X)×Aq(X) → Ap+q(X).

Hence, A∗(X) is a graded ring.
We also have functoriality. Indeed, if X ′ → X is a morphism of schemes locally of finite type over S, then by

viewing a scheme X ′′ locally of finite type over X ′ as a scheme locally of finite type over X, we get an obvious
restriction map

Ap(X) → Ap(X ′), c 7→ res(c).

This map clearly induces a graded ring homomorphism A∗(X) → A∗(X ′).
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Definition. The graded (possibly non-commutative ring) A∗(X) associated to X is the Chow cohomology of
X.

Notice that the intersection with i’th Chern class homomorphism associated to a locally free sheaf V is a
bivariant class on X of degree i; indeed, to any f : X ′ → X we have the associated map ci(f

∗V) : CHk(X
′) →

CHk−i(X
′). This gives the following definition.

Definition. For a locally free sheaf V of fixed rank on X, the i’th Chern class ci(V) is the bivariant class
associated to the homomorphism ci(V) ∩ − : CHk(X) → CHk−i(X) described above.

The total Chern class is the non-homogeneous element

c(V) :=
r∑

i=0

ci(V) ∈ A∗(X).

Example 5.24. c0(OX) = 1 and c1(OX) = 0 in the ring A∗(X). More generally, we have c0(V) = 1 in A∗(X)
for all locally free sheaves V.

Now that the Chern classes live inside a graded (possibly non-commutative) ring, we can talk about poly-
nomial relations between them. We have the following properties of Chern classes. Here, we will write
Pp ∈ Z[y1, y2, ...] to be the unique degree p homogeneous polynomial (where we set deg yi := i) such that
for all n ≥ p, we have

Pp(s1(n), ..., sp(n)) =

n∑
i=1

xpi

where the si(n) are the elementary symmetric polynomials in x1, ..., xn. For instance, we have

P1 = y1, P2 = y21 − 2y2, P3 = y31 − 3y1y2 + 3y3,

and so on. We set
Pp(V) := Pp(c1, ..., cr) ∈ Ap(X)

for p ≤ r, for any locally free sheaf V of rank r. For convenience, we also set P0(V) := rankV ∈ Z ↪→ A0(X).

Proposition 5.25. Let X be locally of finite type over S, and let V,V ′,V1, ... be locally free sheaves on X of
finite rank.

1. For all i, the i’th Chern class ci(V) lies in the center of A∗(X).

2. For any exact sequence
0 → V1 → V → V2 → 0,

we have
Pp(V) = Pp(V1) + Pp(V2)

in A∗(X).

3. For any filtration
0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr = V

where Vi/Vi−1 =: Li is a line bundle, then we have

c(V) =
r∏

i=1

(
1 + c1(Li)

)
in A∗(X).

4. If V is of rank r and L is an invertible sheaf, then

ci(V ⊗OX
L) =

i∑
j=0

(
r − i−+j

j

)
ci−j(E)c1(L)j

in A∗(X).

5. More generally, if Vi is of rank ri, then we have

Pp(V1 ⊗OX
V2) =

p∑
i=0

(
p

i

)
Pi(V1)Pp−i(V2)

as elements of Ap(X).

6. Recall that EndOX
(V) is a locally free sheaf of rank r2. We have

c2
(
EndOX

(V)
)
= 2rc2(V)− (r − 1)c1(V)2.
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5.6 Chern Roots, Chern Characters, Todd Classes, and Grothendieck-Riemann-
Roch

Lemma 5.26 (Splitting Principle). Suppose X is locally of finite type over S, and Vi (1 ≤ i ≤ k) is a locally
free OX-module of rank ri. Then, there exists a projective flat morphism π : P → X of fixed relative dimension
d = r1 + · · ·+ rk − k such that

• for any f : X ′ → X the map π∗
X′ : CH∗(X

′) → CH∗+d(X
′ ×X P ) is injective;

• the restriction map resπ : A∗(X) → A∗(P ) associated to π is injective; and

• for each 1 ≤ i ≤ k, the bundle π∗Vi has a filtration

0 = V(i)
0 ⊂ V(i)

1 ⊂ V(i)
2 ⊂ · · · ⊂ V(i)

r = Vi

where each graded piece L(i)
j := V(i)

j /V(i)
j−1 is a line bundle.

For k = 1 and r ≥ 2, the projective space bundle P = P(V) works. Of course, for k = 1 and r = 1, P = X
trivially works. The general P is constructed by induction on k.

In particular, in the notation of the lemma for k = 1, we have

resπ(c(V)) = c(π∗V) =
r∏

i=1

(1 + c1(Li)).

Since resπ is injective by construction, for any loaclly free sheaf V of rank r on X, it makes sense to write

c(V) =:

r∏
i=1

(1 + xi)

for formal symbols x1, ..., xn.

Definition. The formal symbols x1, ..., xn such that c(V) =:
∏r

i=1(1 + xi) are called Chern roots.

The splitting principle for general k then says that we can compute (homogeneous) polynomials in various
Chern classes by decomposing them into Chern roots and then formally manipulating the Chern roots of the
various locally free sheaves in question. In fact, pretty much every statement in Proposition 5.25 can be proven
in this way.

Remark 5.27. From now on, rather than fixing such projective maps π : P → X and considering the Chern
roots as elements of A1(P ), we can simply consider them as formal symbols of degree 1.

Remark 5.28. The i’th Chern class ci(V) is the i’th symmetric polynomial in the Chern roots x1(V), ..., xr(V).

Definition. Let V be a locally free sheaf on X of rank r with Chern roots x1, ..., xr. The Chern character
ch(V) is the formal expression

ch(V) =
r∑

i=1

exi ,

viewed as a formal power series in the xi.

Notice first that

ch(V) =
∑
p≥0

1

p!
Pp(V)

with Pp the polynomials defined previously. Thus, for instance, Proposition 5.25(2) can be written simply as

ch(V) = ch(V1) + ch(V2)

for any short exact sequence 0 → V1 → V → V2 → 0, while Proposition 5.25(5) can be written simply as

ch(V1 ⊗OX
V2) = ch(V1)ch(V2).

Remark 5.29. If π : P → X is as above, then we view ch(V) as living in∏
p≥0

Ap(X)⊗Q,

where the degree p part 1
p!Pp(V) lives in Ap(X)⊗Q.

43



We have a final (formal) class attached to a vector bundle.

Definition. Suppose V is a locally free sheaf of rank r on X with Chern roots x1, ..., xr. Then, the Todd Class
of V is

Todd(V) =
r∏

i=1

xi
1− e−xi

.

Using the previous properties of Chern classes, we get for instance that

Todd(V) = Todd(V1)Todd(V2)

for any short exact sequence 0 → V1 → V → V2 → 0.
We can now state Grothendieck-Riemann-Roch in extreme (but still not utmost) generality. Here, recall

that
TX/Y = HomOX

(ΩX/Y ,OX).

Theorem 5.30 (Grothendieck-Riemann-Roch). Suppose X and Y are locally of finite type over S, and f :
X → Y a proper smooth S-morphism. Let V be a locally free sheaf of rank r on X. If Rif∗V are locally free
sheaves on Y of finite rank as well, then

f∗
(
Todd(TX/Y ) · ch(V)

)
=

r∑
i=0

(−1)ich(Rif∗V).

We can simplify the above statement if Y = Spec k for k a field. To do this, we need to introduce some new
notation. If f : X → Spec k is proper, then we have proper pushforward

p∗ : CH0(X) → CH0(Spec k).

However, CH0(Spec k) = Z · [Spec k], and so by sending [Spec k] to 1 we get a morphism

deg : CH0(X) → Z,

the degree map. Of course, various properties of the degree map follow immediately from the corresponding
properties of proper pushforward. This degree map coincides with the usual notion of the degree of a vector
bundle over curves.

Lemma 5.31. Suppose C is a proper irreducible curve over k, and V a locally free OX-module of constant rank
on C. Then,

deg
(
c1(V) ∩ [C])

coincides with the usual notion of degree.

Now, notice that Rif∗V (for f : X → Spec k proper) is precisely Hi(X,V). Here, we recall that a coherent
sheaf on Spec k is the same as a finite dimensional k-vector space. Now, Ai(Spec k) = 0 for all i ≥ 0, and so we
see that

ch(Rif∗V) = dimkH
i(X,V).

Definition. For a coherent sheaf E on X, where X is a scheme over k, the Euler characteristic of E is

χ(X, E) :=
∑
i≥0

(−1)i dimkH
i(X, E).

We can thus reformulate the Grothendieck-Riemann-Roch theorem as follows.

Theorem 5.32. Suppose X is smooth, proper, and locally of finite type over k. Let V be a locally free sheaf of
rank r on X. Then

deg
(
Todd(TX/Y ) · ch(V)

)
= χ(X,V).

Here, by deg
(
Todd(TX/Y ) · ch(V)

)
we really mean the degree of the degree 0 part of the cycle Todd(TX/Y ) ·

ch(V) ∩ [X].
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6 Non-Abelian Hodge Theory

6.1 Higgs Sheaves

Fix a morphism π : X → Y . Suppose θ : E → E ⊗OX
Ω1

X/Y is some OX -linear map, for E a OX -module. Then,
as with connections, the above induces a map

θp : E ⊗OX
Ωp

X/Y → E ⊗OX
Ωp+1

X/Y

given by
θ(e⊗ ω) = (−1)p(θe) ∧ ω

on local sections e and ω of E and ΩX/Y respectively. Write ∧pθ for the p-fold composition

E 7→ E ⊗OX
Ωp

X/Y .

Definition. Let E be a sheaf on X. A Higgs field on E (relative to Y ) is an OX -linear map θ : E → E⊗OX
Ω1

X/Y

such that ∧2θ = 0.
A Higgs sheaf on X relative to Y is a sheaf equipped with a Higgs field.

Remark 6.1. This is highly reminiscent of the definition of an integrable connection. In fact, these are related
if one writes down the correct generalization of a de Rham complex and a connection. This is done in [Lan14].

Let θ : E → E⊗OX
Ω1

X/Y be aOX -linear map. Now, suppose v is a local section of TX/Y = HomOX
(Ω1

X/Y ,OX)

over an open U ⊂ X, then θv := (1 ◦ v) ◦ θ yields a OU -linear map E|U → E|U . Hence, the data of a OX -linear
map E → E ⊗OX

Ω1
X/Y is the same as the data of an OX -linear map TX/Y → EndOX

(E). A computation shows

that the condition ∧2θ = 0 corresponds to the condition that θv ◦ θw = θw ◦ θv for any local sections v, w of
TX/Y . Hence, the data of a Higgs field is the same as the data of a OX -linear map TX/Y → EndOX

(E) such
that the image sheaf is a commutative OX -subalgebra of EndOX

(E).
Of course, a Higgs field induces a complex structure on E ⊗OX

Ω•
X/Y , where the differential maps θ are all

OX -linear (unlike in the case of connections).

6.2 Classical Non-Abelian Hodge Theory: A Summary

Suppose X is a smooth projective C-variety of dimension n, so that by Serre’s GAGA it is a Kähler manifold
of C-dimension n.
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