Problem Set 1

Kush Singhal

5 July - 9 July 2023

Throughout, k is going to denote a field of characteristic not 2.

- 1. (*Exercise 1.9*) Any quadratic space over k admits an orthogonal basis.
- 2. (*Exercise 1.15*) Suppose V is a regular quadratic space. Let W be a subspace. Show that the following are equivalent:
 - (a) W is regular;
 - (b) W^{\perp} is regular;
 - (c) $W \cap W^{\perp} = \{0\};$
 - (d) $V = W \oplus W^{\perp}$.

3. (*Exercise 1.16*) Suppose V is any quadratic space. Consider the subspace

$$\operatorname{rad}(V) := \{ v \in V : B(x, v) = 0 \quad \text{for all } x \in V \}.$$

Let V' be any subspace of V such that $V = V' \oplus \operatorname{rad}(V)$. Show that V' is regular, and that

$$V = \operatorname{rad}(V) \perp V'$$

Hence, show that every non-zero quadratic form $f \in k[x_1, ..., x_n]$ is of the form

$$f = h(a_{11}x_1 + \dots + a_{1n}x_n, \dots, a_{r1}x_1 + \dots + a_{rn}x_n)$$

for some $1 \le r \le n$, some regular quadratic form $h \in k[y_1, ..., y_r]$, and some $A = (a_{ij}) \in GL_n(k)$.

- 4. (*Exercise 1.18*) Let V be a regular quadratic space over k and $a \in k$. Then V represents a if and only if $\langle -a \rangle \perp V$ is isotropic.
- 5. (*Exercise 1.30*) Suppose V is a regular quadratic space over k such that we have a decomposition

$$V = H_1 \perp \dots \perp H_r \perp V'$$

where V' is either 0 or anisotropic, and $0 \le r \le \frac{1}{2} \dim V$. Show, using Witt's extension theorem, that this r does not depend on the above decomposition of V. Hence, show that $r = \operatorname{ind} V$.

6. (Section 1.5) Let us prove Proposition 1.30:

Suppose Q_1 and Q_2 are two regular quadratic forms on the same vector space V over k. If $O(V,Q_1) = O(V,Q_2)$, then there exists $\lambda \in k^*$ such that $Q_2 = \lambda Q_1$.

We prove this in the following steps.

- (a) Prove the following lemma: Suppose W is a regular quadratic space over k, and fix $v \in W$ with $Q_W(v) \neq 0$. If $\ell: W \to k$ is a linear functional such that $B(w, v)\ell(w) = 0$ for all $w \in W$, then $\ell = 0$.
- (b) Let $v \in V$ be such that $Q_1(v) \neq 0$. Show that $Q_1(v)B_2(v,w) = Q_2(v)B_1(v,w)$ for all $w \in V$.
- (c) Using (b), prove the proposition.