Problem Set 5

Kush Singhal

31 July 2023 - 7 August 2023

Throughout, unless otherwise specified, we fix a positive definite quadratic space V over \mathbb{Q} and a full lattice L in V.

- 1. By computing the first few coefficients of both sides, show that $E_6E_8 = E_{14}$.
- 2. Notice that $E_6^2 \in M_{12}(SL_2(\mathbb{Z}), \mathbb{1})$. This vector space is spanned by E_{12} and Δ . Find $a, b \in \mathbb{C}$ such that $E_6^2 = aE_{12} + b\Delta$.
- 3. (*Theorem 0.3*) By studying the modular form $\theta \in M_{1/2}(\Gamma_1(4), \mathbb{1})$ given by

$$\theta(z) := \sum_{n \in \mathbb{Z}} e^{2\pi i n^2 z},$$

prove Jacobi's Theorem.

Theorem. The number of integer solutions (x, y) to $x^2 + y^2 = n$ for a given positive integer n is given by

$$4\left(\sum_{d\mid n,d\equiv 1 \pmod{4}} 1 - \sum_{d\mid n,d\equiv 3 \pmod{4}} 1\right).$$

4. We prove the following famous theorem of Lagrange.

Theorem (Lagrange's Four Square Theorem). Every positive integer can be written as the sum of four squares.

We will in fact go beyond, by providing a formula!

- (a) Consider the quadratic form $f := x^2 + y^2 + z^2 + w^2$. Evaluate the first few terms of the Fourier expansion of Θ_f .
- (b) Recall the modular form $F \in M_2(\Gamma_0(2))$ given by

$$F(z) = E_2(z) - 2E_2(2z).$$

Compute its first few Fourier coefficients.

- (c) Show that Θ_f and F form a basis for $M_2(\Gamma_0(4))$.
- (d) Show that G(z) := F(2z) also lies inside $M_2(\Gamma_0(4))$.
- (e) By studying the first few Fourier coefficients of G, F, and Θ_f , find a formula for

$$r(n) := \#\{(x, y, z, w) \in \mathbb{Z}^4 : n = x^2 + y^2 + z^2 + w^2\}.$$

- (f) Using the formula obtained, show that r(n) > 0 for all $n \ge 0$ thus proving Lagrange's theorem.
- (g) Can you write down an explicit formula for the number of ways a prime number p can be written as the sum of four squares? How about for squares of prime numbers? How about for odd square-free integers?