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Notation

• Q denotes the field of rational numbers, and Z its ring of integers.

• N denotes the set of positive integers (in particular, we use the convention that 0 /∈ N).

• Unless otherwise specified, the letter p is always going to denote a prime.

• For a, b, n ∈ Z, we write a ≡ b (modn) to mean n|(b− a).

• Fp denotes the finite field with p elements, i.e. Fp
∼= Z/pZ.

• R denotes the field of real numbers.

• Qp will denote the field of p-adic numbers, and Zp the ring of p-adic integers.

• Throughout, a ring will be assumed to be unital and commutative. An algebra over a ring will always be
assumed to be unital and associative.

• Given a ring R, we write R∗ to be the group of units of R. For instance, for k a field, we have k∗ = k\{0}.

• If V and W are vector spaces over k, then Homk(V,W ) denotes the k-vector space of all k-linear maps
T : V →W . We let GL(V ) denote the group of all invertible k-linear maps T : V → V . We write Mn(k)
and GLn(k) for M(kn) and GL(kn) respectively.

• For a matrix A, we denote its transpose by At.
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• The phrase ‘almost all’ will always mean ‘all but finitely many’.

0 Overview

This tutorial is about quadratic forms, i.e. quadratic homogeneous polynomials in n variables over various fields
and rings. Given a quadratic form, say

f(x, y, z) = x2 + y2 + 3z2 + 4xy

we can ask a few basic questions:

Q1) Can we understand the set of real numbers/rational numbers/p-adic numbers/integers that can be repre-
sented by f? More generally, for R some ring or field, which a ∈ R can be written as

f(x, y, z) = a

for x, y, z ∈ R?

This question of course has many sub-questions, two examples being:

(a) Is the above set non-empty, i.e. can we find even one such a ∈ R?

(b) Is there an easy way to tell whether a ∈ R can be represented by f without finding explicit solutions
in x, y, z?

Q2) Can we classify quadratic forms? For instance, is there some (relatively) small set S of quadratic forms
such that if we can answer the above question for all f ∈ S, then we can actually answer the above
question for all quadratic forms?

Q3) Fixing n ∈ Z, say, can we find the number of solutions to f(x, y, z) = n for x, y, z ∈ Z? Is the number of
solutions finite or infinite? If the number of solutions is finite, can we write down a formula in the variable
n?

In this tutorial, we try to answer the above three questions for quadratic forms over Q and Z. We will see
however that in trying to answer the question for the ‘global field’ Q, we need to in fact answer the above
questions for the completions of Q, i.e. for R and for the p-adic numbers. This is the local-global principle.
This principle is present everywhere in number theory, and guides how much modern research is done. The
idea itself is simple: in order to study some object over Q, we try to instead understand this object over each
prime individually, and then try to stitch this ’local’ information together to gain information about the original
’global’ object over Q. The prototypical example of a local-global principle is the Hasse-Minkowski Theorem
for quadratic forms.

Another key idea is to use linear algebra and geometry to answer the above questions. The basic idea is that
quadratic forms correspond to bilinear forms, which behave like inner products in some ways. By exploiting
this analogy with inner products on vector space, we will develop a linear algebraic theory of quadratic spaces
and lattices. This theory will lead to deeper insights into quadratic forms. Of course, it should be kept in mind
that this will always be an analogy: one can develop the entire theory without having to mention vector spaces
at all (indeed, this is what is done in [Cas78]). However, the linear-algebraic theory allows us to state things
cleanly, and is a useful source of motivation and intuition.

Finally, towards the end of the tutorial, in our attempt to answer the third question above, we will see how
the interplay between analytic and algebraic number theory gives us very explicit results about the number of
representations by quadratic forms. This will culminate in the Siegel-Weil mass formula.

Of course, the entire story above can be generalised to number fields K and their ring of integers OK . In
fact, we can even generalise the theory to function fields. The Hasse-Minkowski theorem extends to this setting
as well, as will pretty much all of the algebraic theory.

For the sake of concreteness, I have decided to stick to Q and Z rather than general number fields. However,
I will still make brief remarks about the theory over general number fields. Thus, if you are interested in the
theory over an arbitrary number field, I would encourage you to read through the remarks I make. Those who
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are not familiar with the language of number fields may safely skip such remarks. I’ve tried to state results in
as much generality as I can without having to add unnecessary complications.

Let us look at a concrete classical example to get a sense for the kind of results we’re after. The binary
quadratic form f = x2+ y2 was first studied by Fermat, and then by Gauss, Jacobi, and a whole litany of other
famous number theorists. Fermat gave a complete answer for the first question.

Theorem 0.1 (Fermat). An odd prime is a sum of two integer squares if and only if it is 1 modulo 4.
In our terminology, a prime p is represented by the binary quadratic form f = x2 + y2 over Z if and only if
p = 2 or p ≡ 1 (mod 4).

Corollary 0.1.1. A number n ∈ N is represented by x2 + y2 over Z if and only if in the prime factorisation
n = pk1

1 · · · pkr
r for n, the exponent ki must be even whenever pi ≡ 3 (mod 4).

The second question was answered by Gauss in his Disquisitiones Arithmeticae. His general body of work on
binary quadratic forms is a little too big for this section, but we will satisfy ourselves with the following result
just to illustrate a positive answer to the second question above.

Theorem 0.2 (Gauss). Let a, b, c ∈ Z, and set f(x, y) = ax2 + bxy + c2. Then there exist α, β, γ, δ ∈ Z with
αδ − βγ = 1 and

f(αx+ βy, γx+ δy) = x2 + y2

if and only if b2 − 4ac = −4.

Finally, let us give an answer to the third question for f = x2 + y2 over Z. Jacobi proved the following
result using a very clever argument involving formal power series. However, from the modern perspective, this
statement is a direct result of the Siegel-Weil Mass Formula.

Theorem 0.3 (Jacobi). Let r(n) denote the number of integer solutions (x, y) to x2 + y2 = n. Then,

r(n) = 4

 ∑
d|n,d≡1 (mod 4)

1−
∑

d|n,d≡3 (mod 4)

1

 ,

i.e. 1
4r(n) is the difference between the number of divisors of n congruent to 1 modulo 4, minus the number of

divisors of n congruent to 3 modulo 4.

We will revisit all of the above theorems above later on in the tutorial.

The main reference for the algebraic theory of quadratic forms is the excellent book by Timothy O’Meara
[OMe73]. However, this book is quite old and so a lot of the notation and terminology is outdated. O’Meara also
works over general number fields rather than just Q. Another good reference is Cassels [Cas78]; the advantage
with him is that he only works over Q. For a computational point of view, as well as for applications in error
correcting codes and so on, [CS13] is an excellent book. For the latter part on the Siegel-Weil Mass Formula, I
don’t know of any good complete expository references. I will thus mostly be following [Gar14] and [Li23] for
the proof of the Siegel-Weil mass formula, and a variety of modern papers for applications of the formula.

Finally, a word on exercises. I have sprinkled a lot of exercises throughout the notes. These exercises are
usually results from one of the references whose proof was straightforward enough. Quite a few of the exercises
are extremely easy and can be proved within a couple of lines; most exercises should be easy enough!

1 Quadratic Spaces

Let us first introduce the basic language and terminology of quadratic forms. As mentioned in the overview,
our approach is going to be a linear algebraic one, so that we can exploit some of the algebra and geometry
inherent in quadratic forms.

Throughout, k is going to denote a field of characteristic not 2.
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1.1 Definitions

Recall that a symmetric bilinear form B on a finite dimensional k-vector space V is a mapping

B : V × V → k

such that B(ax + by, z) = aB(x, z) + bB(y, z) for a, b ∈ k and x, y, z ∈ V , and such that B(x, y) = B(y, x) for
x, y ∈ V .

Remark 1.1. Alternatively, a symmetric bilinear form is an element of Sym2(V ∗).

Given a symmetric bilinear form B on a vector space V , we can set

Q : V → k, Q(x) := B(x, x).

Definition. A quadratic space (over k) is a finite dimensional vector space V over k equipped with a symmetric
bilinear form B.
The quadratic form on V associated to B is the above map Q.
The quadratic space is said to be n-ary if the underlying space has dimension n. We say a quadratic space is
unary, binary, ternary, quaternary for n = 1, 2, 3, 4 respectively.

We can of course recover the symmetric bilinear form from its corresponding quadratic form via the identity

B(x, y) =
1

2
(Q(x+ y)−Q(x)−Q(y)) .

Thus we can define a quadratic space by simply defining the associated quadratic form on the vector space.

Example 1.2. If V is a quadratic space, then for any W ⊂ V a k-linear subspace of V we can restrict the
quadratic form QV of V to W to get a new quadratic space (W,QV |W ). The inclusion map i : W ↪→ V is an
isometry.

Example 1.3. Classically, a quadratic form is supposed to be a homogeneous degree 2 polynomial in n variables.
We can recover this notion here. Indeed, if f ∈ k[x1, ..., xn] is a degree 2 homogeneous polynomial, then we can
simply take V = kn and define the quadratic form

Q(v) = f(v1, ..., vn)

for v = (v1, ..., vn) ∈ kn.

Example 1.4. Suppose A ∈Mn(k) is a symmetric matrix. Then, we can equip V = kn by the symmetric bilinear
form

B(x, y) = xtAy

where we view x, y ∈ kn as column vectors. This n-ary quadratic space is denoted by ⟨A⟩ in [OMe73].

Example 1.5. For a ∈ k, we can define a quadratic space by equipping the 1-dimensional space k by the quadratic
form

Qa(b) = ab2

for b ∈ k. This quadratic space will be denoted by < a >. Notice that this coincides with the previous example;
of course, we have M1(k) = k and < a > defined here is precisely the quadratic space defined in the above
example.

We can also define maps between quadratic spaces, in the obvious way.

Definition. A morphism of quadratic spaces σ : (V,BV ) → (W,BW ) over k is a k-linear map σ : V →W such
that BW (σv1, σv2) = BV (v1, v2) for v1, v2 ∈ V .

Equivalently, a morphism of quadratic spaces is a k-linear map that preserves the quadratic forms.

Definition. An isometry is a morphism of quadratic spaces that is injective.
Two quadratic spaces are isomorphic if there exists a surjective isometry between them.
For a quadratic space (V,Q), the orthogonal group attached to V , denoted by O(V,Q), is the subgroup of GL(V )
consisting of isometries. If the Q is known, we can simply write O(V ).
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Remark 1.6 (for those who know about reductive group schemes). O(V ) is the set of k-points of a certain
reductive group scheme over k. In fact, the functor R 7→ O(V ⊗k R) is an algebraic group, say denoted by
O(V ).

Example 1.7. By fixing a basis x1, ..., xn for V , we can write

A =
(
B(xi, xj)

)
1≤i,j≤n

,

and then we see easily that V ∼= ⟨A⟩. This is is the Gram matrix of V (with respect to the basis x1, ..., xn).

Example 1.8. Suppose A,A′ ∈ Mn(k) are symmetric matrices. Then ⟨A⟩ ∼= ⟨A′⟩ if and only if there exists
X ∈ GLn(k) such that A′ = XAXt.

In particular, in the second example above, we see that detA′ = (detA)(detX)2. This leads to the following
definition.

Definition. The discriminant discV of a quadratic space V is the element of {0}∪k∗/(k∗)2 given by (detA)(k∗)2

for any symmetric matrix A such that V ∼= ⟨A⟩.

It is clear that the discriminant is an invariant of a quadratic space, i.e. discV = discV ′ if V ∼= V ′. Note that
multiplication of discriminants makes sense.

Finally, recall that we are interested in the set Q(V ), motivating the following definitions.

Definition. Let (V,Q) be a quadratic space. An element a ∈ k is said to be represented by Q (or sometimes
represented by V if the quadratic form on V is clear) if there exists v ∈ V such that Q(v) = a.
A quadratic space is universal if Q(V ) = k, i.e. every element of k is represented by the quadratic form on V .

It is easy to see that a is represented by a quadratic space (V,QV ) if and only if there is an isometry
(< a >,Qa) ↪→ (V,QV ).

Even though a quadratic space is a vector space with extra structure, as usual we often abuse notation and
say that ‘V is a quadratic space over k’, when we really mean that V is a vector space over k equipped with a
symmetric bilinear form BV and corresponding quadratic form QV . If the vector space is clear from context,
we sometimes omit the V from the subscript.

Now that we have a symmetric bilinear form on a vector space, we can try to generalise various notions from
an introductory linear algebra course.

Definition. Let V be a quadratic space. Suppose v, w ∈ V . We say that v, w are orthogonal (with respect to
the quadratic space structure on V ) if B(v, w) = 0.

Given two subspaces W1,W2 ⊂ V such that V =W1⊕W2 as k-vector spaces, we say that V is the orthogonal
sum of W1 and W2, written V =W1 ⊥W2, if every vector in W1 is orthogonal to every vector in W2.

Given a subspace W ⊂ V , we write W⊥ to be the subspace of all v ∈ V such that v is orthogonal to w for all
w ∈W .

A basis v1, ..., vn is said to be orthogonal if vi is orthogonal to vj for all i ̸= j.

These definitions satisfy various familiar/obvious properties, all of which are left as an exercise.

Exercise 1.9. Suppose V is a quadratic space. Then V always admits an orthogonal basis.

Exercise 1.10. If V ∼= ⟨A1⟩ ⊥ ⟨A2⟩ ⊥ · · · ⊥ ⟨Ar⟩ for symmetric matrices Ai, then

V ∼=

〈
A1

A2

. . .

Ar


〉
.

Exercise 1.11. If V ∼=W1 ⊥W2 then disc(V ) = disc(W1)disc(W2).
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1.2 Regularity and Isotropy

However, unlike in Euclidean geometry, in a general quadratic space V with quadratic form Q it is possible for
there to exist non-zero v ∈ V such that Q(v) = 0. Thus we have a few extra definitions.

Definition. A quadratic space V is regular if discV ̸= 0.

The following exercises give all the key properties of regular spaces; the proofs involve simply unwinding
definitions and shouldn’t be too difficult.

Exercise 1.12. Let V be a quadratic space with quadratic form Q. Show that the following are equivalent.

1. V is regular.

2. The usual k-linear map
V → Homk(V, k), v 7→ B(v,−)

is an isomorphism.

3. If w ∈ V and B(v, w) = 0 for all v ∈ V , then w = 0.

4. V ⊥ = {0}.

5. If x1, ..., xn are an orthogonal basis for V , then Q(xi) ̸= 0 for all xi.

Show also that if V is regular, then (W⊥)⊥ =W for any subspace W ⊂ V .

Exercise 1.13. If W is a regular subspace of a (possibly not regular) quadratic space V , then show that V =
W ⊥W⊥, and that if V =W ⊥W ′ for some other subspace W ′ of W , then W ′ =W⊥.

Exercise 1.14. If V is a regular quadratic space, show that all morphisms of quadratic spaces V → W are
actually isometries, i.e. must be injective.

Exercise 1.15. Suppose V is a regular quadratic space. Let W be a subspace. Show that the following are
equivalent:

1. W is regular;

2. W⊥ is regular;

3. W ∩W⊥ = {0};

4. V =W ⊕W⊥.

Exercise 1.16. Suppose V is any quadratic space. Consider the subspace

rad(V ) := {v ∈ V : B(x, v) = 0 for all x ∈ V }.

Let V ′ be any subspace of V such that V = V ′ ⊕ rad(V ). Show that V ′ is regular, and that

V = rad(V ) ⊥ V ′.

Hence, show that every non-zero quadratic form f ∈ k[x1, ..., xn] is of the form

f = h(a11x1 + · · ·+ a1nxn, ..., ar1x1 + · · ·+ arnxn)

for some 1 ≤ r ≤ n, some regular quadratic form h ∈ k[y1, ..., yr], and some A = (aij) ∈ GLn(k).

This last exercise shows that we only need to look at regular quadratic spaces.

Definition. Let V be a quadratic space.

A vector v ∈ V is isotropic if v is non-zero but Q(v) = 0. Otherwise, v is said to be anisotropic.

A subspace W of V is isotropic if there exists an isotropic vector in W . Otherwise, if every vector of W is
anisotropic, we say that W is anisotropic.
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The following is the most important example of an isotropic quadratic space.

Definition. A binary quadratic space is said to be a hyperbolic plane if it is isomorphic to ⟨( 0 1
1 0 )⟩.

Notice that the discriminant of the hyperbolic plane is −1 · (k∗)2, and so the hyperbolic plane is regular. It
is also clearly isotropic.

Proposition 1.17. Every isotropic regular quadratic space V contains a hyperbolic plane as a subspace.

Proof. Let v ∈ V be an isotropic vector. Since an isotropic quadratic space is by definition regular, by Exer-
cise 1.12 we can find w′ ∈ V such that B(v, w′) ̸= 0. Replacing w′ with 1

B(v,w′)w
′ if necessary, we can assume

that B(v, w′) = 1. Now consider

w = w′ − Q(w′)

2
v.

An easy computation shows that Q(w) = 0 and B(v, w) = 1. We then see that the subspace spanned by v and
w is a hyperbolic plane.

The above proof in fact established something stronger.

Corollary 1.17.1. Every isotropic vector in a regular quadratic space is contained in a hyperbolic plane.

Corollary 1.17.2. The following are equivalent for a binary quadratic space V :

1. V is regular isotropic;

2. V is the hyperbolic plane; and

3. discV = −(k∗)2.

Proof. (1) ⇔ (2) is immediate from the theorem. (2) =⇒ (3) is a direct computation. So suppose (3). As
discV = −1, V is regular, and so Q(V ) ̸= {0}. Let α ∈ Q(V ) \ {0} and let x ∈ V such that Q(x) = α. By
regularity, V = kx ⊥ ky for some y ∈ V . Now discV = −(k∗)2 implies that −αQ(y) is a non-zero square
in k, and so after scaling y we can write Q(y) = −α. One then checks that Q(x+y

2 ) = 0 = Q(x−y
α ) and

B(x+y
2 , x−y

α ) = 1, so that V is isomorphic to the hyperbolic plane.

Corollary 1.17.3. Any isotropic regular quadratic space is universal.

Proof. By the lemma, it suffices to prove that the hyperbolic plane H = ⟨( 0 1
1 0 )⟩ is universal. However this is

easy, since for any a ∈ k we can take v = ( 12 , a) so that

Q(v) =
(
1
2 a

)(0 1
1 0

)(
1
2
a

)
= a.

Corollary 1.17.4. Let V be a regular quadratic space, and let x1, ..., xr be r linearly independent vectors in V .
Suppose that B(xi, xj) = 0 for all 1 ≤ i, j ≤ r. Then, there exist subspaces Hi ⊂ V such that xi ∈ Hi, each Hi

is a hyperbolic plane, and Hi ⊆ H⊥
j for all i ̸= j (so that H1 ⊥ · · · ⊥ Hr is a 2r-dimensional subspace of V ).

Proof. The proof is by induction on r. For r = 1, this is Corollary 1.17.1. So suppose r > 1. Let U = kx1 ⊥
· · · ⊥ kxr−1 and W = U ⊥ kxr. By assumption, Q(W ) = {0}. Now, we have U ⊂ W and so W⊥ ⊂ U⊥. Pick
yr ∈ U⊥\W⊥, and takeHr = kxr+kyr. A quick computation checks thatHr is a hyperbolic plane containing xr
and that xi ∈ H⊥

r for 1 ≤ i ≤ r−1. Applying the inductive hypothesis to H⊥
r , we have H1 ⊥ · · · ⊥ Hr−1 ⊆ H⊥

r

with xi ∈ Hi and Hi a hyperbolic plane, and the collection H1, ...,Hr satisfies the lemma.

We have already made some progress towards answering Q1 from before!

The following exercises are also corollaries of the above lemma.

8



Exercise 1.18. Let V be a regular quadratic space over k and a ∈ k. Then V represents a if and only if ⟨−a⟩ ⊥ V
is isotropic.

Exercise 1.19. Let U be a regular ternary subspace of a regular quaternary space V such that discV = 1. Then
V is isotropic if and only if U is isotropic.

1.3 Reflections and Rotations

There is a special family of isometries in O(V ) for V a regular quadratic space.

Definition. Fix an anisotropic vector x ∈ V . The reflection (aka symmetry) attached to x is the map τx :
V → V given by

τxy := y − 2B(x, y)

Q(x)
x.

Remark 1.20. In [OMe73], reflections mean something else entirely, while he refers to τx as symmetries. However,
I think the term reflection is quite common nowadays.

It is easy to check that τx ∈ O(V ), that it is an involution (i.e. τ2x = 1), and that det τx = −1 for all
anisotropic x ∈ V . Notice also that τx(x) = −x, and that τx(v) = v whenever B(v, x) = 0. Thus, τx can be
viewed as the reflection through the subspace (kx)⊥ of V orthogonal to x. It is easy to see that τλx = τx for
any λ ∈ k∗.

Exercise 1.21. Suppose σ ∈ O(V ) and x ∈ V is anisotropic. Then, τσx = στxσ
−1.

Now, recall that we have a group homomorphism det : GL(V ) → k∗ for any k-vector space V . Since
O(V ) ⊂ GL(V ), we have the group homomorphism

det |O(V ) : O(V ) → k∗.

Exercise 1.22. The image of det |O(V ) is the subgroup {±1} ⊂ k∗.

Definition. The special orthogonal group SO(V ) attached to a quadratic space V is the kernel of det |O(V ), i.e.
it is the subgroup of isometries of determinant 1.

We can now prove the following.

Theorem 1.23 (Cartan-Dieudonné). Every isometry σ ∈ O(V ) of a regular n-ary quadratic space is a product
of at most n reflections, (here, the identity is considered to be the product of 0 reflections).

Before we establish this theorem, we need a couple of lemmas. The first is left as an exercise.

Exercise 1.24. Suppose V is a quadratic space, and W ⊆ V a subspace such that Q(W ) = {0}. Then, show
that W ⊆W⊥.

This second lemma is the technical heart of the proof.

Lemma 1.25. Suppose V is as in the statement of the theorem. Suppose σ ∈ O(V ) satisfies the condition that
σx− x is non-zero and isotropic whenever x ∈ V \ {0} is anisotropic. Then, n ≥ 4, n is even, and σ ∈ SO(V ).

Proof. Suppose there exists anisotropic x ∈ V such that σx is not linearly independent from x. We must have
σx = ±x, and so either σx − x is zero or it is anisotropic, thus violating the given assumption on σ. Thus x
and σx must be linearly independent whenever x is anisotropic. In particular, n ̸= 1.

If n = 2, then as discV ̸= 0 we can pick an anisotropic x ∈ V . Since x, σx are linearly independent, V has a
basis given by x and σx − x. However since σx − x is isotropic, a simple calculation shows Q(x) = B(x, σx),
and so we see that

B(σx− x, ax+ b(σx− x)) = 0

for all a, b ∈ k. This contradicts the regularity of V .
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We now suppose that n ≥ 3. Let y ∈ V be isotropic; then there exists a hyperbolic plane H ⊂ V with y ∈ H
and V = H ⊥ H⊥. Since H is regular, H⊥ is regular, and so there exists an anisotropic z ∈ H⊥. Thus, for any
a ∈ k∗, we see that Q(y + az) ̸= 0. By our assumption on σ, we have Q(σz − z) = 0 and

Q(σ(y + az)− y − az) = 0.

A simple computation then shows that

Q(σy − y) + 2aB(σy − y, σz − z) = 0

for all a ∈ k∗. Thus Q(σy − y) = 0. Since Q(σy − y) = 0 for y ∈ V anisotropic anyway, it thus follows that
Q(σy − y) = 0 for all y ∈ V .

In particular, the subspace W = (σ − 1)(V ) satisfies Q(W ) = {0}. A computation now shows that

B(x, σy − y) = −B(σx− x, y) = 0

for all x ∈ V and all y ∈ W⊥. By the regularity of V , we then have σy = y for all y ∈ W⊥. Since σy − y ̸= 0
for y anisotropic, it then follows that every element of W⊥ is isotropic. By Exercise 1.24 we have W ⊆ W⊥

and W⊥ ⊆ (W⊥)⊥. However, V is regular, and so (W⊥)⊥ =W , and thus W⊥ =W .

As σ|W⊥ = 1 and W = im(σ − 1), it follows that

n = dimk ker(σ − 1) + rank(σ − 1) = dimW⊥ + dimW = 2dimW.

Hence n is even. As a consequence of Corollary 1.17.4, we then have a n/2-dimensional subspace U of V such
that Q(U) = {0} and V =W ⊕U . We have (σ−1)(U) ⊆W =W⊥ so that σ(u) = u+L(u) for some linear map
L : U → W⊥. Since σ|W is the identity as well, the matrix of σ is of block form ( I ∗

0 I ), which has determinant
1.

We can now prove the theorem.

Proof of Theorem 1.23. We proceed by induction on n. For n = 1, we have O(V ) = {1V ,−1V } where −1V is
a reflection, and so we are done. We can thus suppose n > 1. If there exists an anisotropic x ∈ V such that
σx = x, then σ|(kx)⊥ has image contained in (kx)⊥ where dimk(kx)

⊥ = n − 1 (since x anisotropic), and we

can apply the inductive hypothesis to σ|(kx)⊥ ∈ O((kx)⊥) and write σ|(kx)⊥) = τy1
· · · τyr

for r ≤ n− 1 vectors

yi ∈ (kx)⊥. Since B(x, yi) = 0 for all 1 ≤ i ≤ r, it follows that τy1
· · · τyr

(x) = x as well, and hence we have the
equality

σ = τy1 · · · τyr

in O(V ).

Next, suppose that we can find an anisotropic x ∈ V such that Q(σx − x) ̸= 0. Then, a quick calculation
shows that τσx−xσ fixes x. As x is anisotropic, the image of τσx−xσ lies in (kx)⊥, and as before τσx−xσ is a
product of at most n− 1 reflections. Multiplying by τσx−x on both sides it follows that σ is the product of at
most n reflections.

Finally, we can suppose that σ is such that σx ̸= x and Q(σx − x) = 0 whenever x ∈ V is anisotropic. By
Lemma 1.25, we know that n ≥ 4 is even and σ ∈ SO(V ). Let y ∈ V be an arbitrary anisotropic vector, and
consider τyσ. Since det(τyσ) = −1 as det τy = −1, by Lemma 1.25 again τyσ cannot satisfy the hypothesis of
the lemma. In particular, we are in one of the previous two cases, and so τyσ is the product of r reflections
with r ≤ n. However n is even, whereas the number of reflections r must be odd as

−1 = det(τyσ) = (−1)r.

Hence r ≤ n− 1, and so by multiplying by τy we see that σ is the product of at most n reflections.

We now have a bunch of corollaries, all of which are left as an exercise.

Corollary 1.25.1. Suppose σ can be expressed as a product of n-reflections. Then, σ can be expressed as a
product of n reflections with the first (or last) symmetry chosen arbitrarily.

Corollary 1.25.2. If σ is a product of r symmetries, then the dimension of its fixed space (i.e. of ker(σ − 1))
is at least n− r.
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1.4 Witt’s Theorems, and Index of Quadratic Spaces

We now give two powerful theorems of Witt.

Theorem 1.26 (Witt’s Extension Theorem (version 1)). Suppose V1, V2 ⊆ V are regular subspaces of the
(possibly not regular) quadratic space V . Suppose ρ : V1 → V2 is an isomorphism of quadratic spaces. Then,
there exists σ ∈ O(V ) such that σ|V1

= ρ.

Proof. Pick an anisotropic x ∈ V1. Then there exists σ′ ∈ O(V ) such that σ′(ρx) = x; indeed, either Q(ρx−x) ̸=
0 in which case we can take σ′ = τρx−x, or Q(ρx−x) = 0 in which case we must have Q(ρx+x) ̸= 0 (as Q(x) ̸= 0)
and we can take σ′ = τρxτρx+x. By replacing ρ and V2 with σ′ρ and σ′V2 respectively, we may as well assume
that x ∈ V1 ∩ V2 and that ρx = x.

If dimV1 = 1, we are done already as V1 = V2 = kx. Otherwise, we use induction on dimV1. Let W = (kx)⊥,
and take V ′

i :=W ∩ Vi. As x ∈ V1 ∩ V2, one checks that ρ|V ′
1
: V ′

1 → V ′
2 is surjective, and thus an isomorphism.

Since x is anisotropic, we have dimk V
′
1 ≤ dimk V1 − 1. By the induction hypothesis, there exists σ1 ∈ O(W )

such that σ1|V ′
1
=W . The map σ ∈ GL(V ) given by σx = x on kx and by σ = σ1 on W is an isometry, so that

σ ∈ O(V ) as required.

Theorem 1.27 (Witt’s Extension Theorem (version 2)). Suppose V is a regular quadratic space, and U is any
subspace of V with an isometry ρ : U ↪→ V . Then, there exists an isomorphism σ ∈ O(V ) such that σ|U = ρ.

Proof. Write U = U0 ⊥ Ur where Q(U0) = {0} and Ur is regular. Let x1, ..., xr be a basis for U0. By
Corollary 1.17.4 applied to U0 ⊆ U⊥

r , there is a 2r-dimensional space H = H1 ⊥ · · · ⊥ Hr with each Hi a
hyperbolic plane and xi ∈ Hi. As H is regular, we can write U⊥

r = H ⊥ W for some W = H. We thus have a
splitting V = H ⊥W ⊥ Ur where each of H,W,Ur are regular.

Now, we can do the same thing for ρ(U). We thus write V = H ′ ⊥ W ′ ⊥ ρ(Ur) where H
′,W ′, ρ(Ur) are all

regular with (ρ(Ur))
⊥ = H ′ ⊥W ′, and where H ′ = H ′

1 ⊥ · · · ⊥ H ′
r with each H ′

i a hyperbolic plane containing
ρxi. We can easily define an extension ρ̂i : Hi → H ′

i of ρ|kxi
: kxi → kσxi. Glueing these ρ̂is together along with

ρ|Ur : Ur → ρ(Ur), we get an isomorphism ρ̂ : H ⊥ Ur → H ′ ⊥ ρ(Ur) ⊂ V . By version 1 of Witt’s extension
theorem, noting that H ⊥ Ur and H ′ ⊥ σ(Ur) are regular, we can find the required extension σ ∈ O(V ).

The following is an immediate corollary of Witt’s Extension theorem.

Theorem 1.28 (Witt’s Cancellation Theorem). Suppose W , W ′, and V are quadratic spaces with V regular.
If W ⊥ V ∼=W ′ ⊥ V , then W ∼=W ′.

Proof. The identity map V ∼= V is an isometry. By version 1 of Witt’s Extension Theorem, this is induced by
an isometry σ ∈ O(W ⊥ V ). One then checks that σ|W is an isomorphism from W to W ′.

The above theorems now allow us to define a new invariant of a regular quadratic space. Indeed, by Witt’s
extension theorems, any two maximal subspaces M , M ′ of V with Q(M) = {0} = Q(M ′) must be isomorphic.
Thus, the dimension of the maximal subspace M of V with Q(M) = {0} is independent of the choice of M .

Definition. The index indV of a regular quadratic space V is the k-dimension of the maximal subspace M of
V satisfying Q(M) = {0}.

We have another interpretation. By Corollary 1.17.4, we can write

V = H1 ⊥ · · · ⊥ Hr ⊥ V ′

where each of the Hi are hyperbolic planes and where V ′ is either 0 or is anisotropic. Witt’s Lemma implies
that the number r of such hyperbolic planes does not depend on how we do the splitting (i.e. it is an invariant
of V ) and that V ′ is unique up to isomorphism. It is easy to check that in fact r = indV .

We have thus proven the following.
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Theorem 1.29 (Witt’s Decomposition Theorem). If V is any regular quadratic space, then indV satisfies
0 ≤ indV ≤ 1

2 dimk V .
There exist H1, ...,HindV ⊂ V hyperbolic planes such that

V = H1 ⊥ · · · ⊥ HindV ⊥ V ′

for a unique (up to isomorphism) subspace V ′ ⊂ V that is either 0 or (regular and) anisotropic.

In this sense, the index of a regular quadratic space measures how far the space is from being anisotropic. If
the index is 0, then the space is anisotropic.

Exercise 1.30. Suppose V is a regular quadratic space such that we have a decomposition

V = H1 ⊥ · · · ⊥ Hr ⊥ V ′

where V ′ is either 0 or anisotropic, and 0 ≤ r ≤ 1
2 dimV . Show, using Witt’s extension theorem, that this r

does not depend on the above decomposition of V . Hence, show that r = indV .

This exercise shows that the index is precisely the number of hyperbolic planes showing up as orthogonal
factors in V .

1.5 The Orthogonal Group Determines the Form

Remark 1.31. This section was the subject of a question in the first problem set.

Perhaps not surprisingly, we have the following result.

Proposition 1.32. Suppose Q1 and Q2 are two regular quadratic forms on the same vector space V over a
field k of characteristic not 2. If O(V,Q1) = O(V,Q2), then there exists λ ∈ k∗ such that Q2 = λQ1.

Proof. We let the corresponding symmetric bilinear forms be B1 and B2 respectively. For v ∈ V with Q1(v) ̸= 0,

consider the reflection τ
(1)
v (x) = x− 2B1(x,v)

Q(v) v. Since τ
(1)
v ∈ O(V,Q1) = O(V,Q2), it preserves B2. The equation

B2(τ
(1)
v w, τ (1)v v) = B2(w, v)

shows that
Q1(v)B2(v, w) = Q2(v)B1(v, w)

for all w ∈ V . In particular, this shows that Q2(v) ̸= 0 for all v ∈ V with Q1(v) ̸= 0. By exchanging the roles
of Q1 and Q2, we see that Q1(v) ̸= 0 if and only if Q2(v) ̸= 0. The previous equation also implies that

(kv)⊥1 := {x ∈ V : B1(v, x) = 0} = {x ∈ V : B2(v, x) = 0} =: (kv)⊥2.

We now fix v ∈ V with Q1(v) ̸= 0; such a v exists by regularity of Q1. Let w ∈ V . We claim that

Q2(w) =
Q2(v)

Q1(v)
Q1(w).

If Q1(w) = 0, then Q2(w) = 0 as well and the equation follows easily, so we may suppose that Q1(w) ̸= 0 and
Q2(w) ̸= 0. In particular, we also have

Q1(w)B2(w, x) = Q2(w)B1(w, x)

for all x ∈ V . If B1(v, w) ̸= 0, it then follows that

Q2(w)

Q1(w)
=
B2(w, v)

B1(w, v)
=
Q2(v)

Q1(v)
.

Finally, suppose B1(v, w) = 0. Then B2(v, w) = 0 as well. We have B1(v, v + w) = B1(v, v) = Q1(v) ̸= 0. By
the previous argument, we know that

Q2(v + w) =
Q2(v)

Q1(v)
Q1(v + w).
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From B1(v, w) = B2(v, w) = 0, we then have that

Q2(v) +Q2(w) =
Q2(v)

Q1(v)

(
Q1(v) +Q1(w)

)
,

and hence that

Q2(w) =
Q2(v)

Q1(v)
Q1(w)

as claimed.

Corollary 1.32.1. Suppose V and W are quadratic spaces over k of the same dimension. Suppose that, under
some linear isomorphism L : V → W , the subgroup O(V ) ⊂ GL(V ) is carried over via conjugation by L to the
subgroup O(W ) ⊂ GL(W ). Then V ∼=W as quadratic spaces.

2 Quadratic Forms over R,C, and Fq.
We are now well-placed to classify all regular quadratic spaces (and thus all quadratic forms) over certain fields.

2.1 k = C
This is in fact trivial. Write a regular quadratic space V as

V = ⟨Cx1⟩ ⊥ · · · ⊥ ⟨Cxn⟩

for some choice of orthogonal basis, with n = dimV . Notice that every element of C has a square root, and so
upon replacing xi with

1√
Q(x)

xi, we can assume that in fact Q(xi) = 1. Hence,

V ∼= ⟨1⟩ ⊥ ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩ .

We have thus classified all complex regular quadratic spaces.

Proposition 2.1. Every regular quadratic space over C is of the form

⟨1⟩ ⊥ · · · ⊥ ⟨1⟩ .

Two regular quadratic spaces over C are isomorphic if and only if they have the same dimensions.

Notice again that ⟨1⟩ is universal, since every element of C has a square root. We thus have the following
result.

Proposition 2.2. Every non-zero regular complex quadratic space is universal.

In fact, this exact same argument here shows that every regular quadratic space over an algebraically closed
field must be of the form ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩.

2.2 k = R
Notice that (R∗)2 = R>0, the set of positive reals. Any real number is either 0, positive, or negative. This basic
fact will allow us to completely determine all regular quadratic spaces over R.

Definition. A real quadratic space V is positive definite if Q(V ) ⊆ R>0. It is negative definite if Q(V ) ⊆ R<0.
Otherwise, it is said to be indefinite.

Now recall that any quadratic space has an orthogonal basis, say

V = ⟨Rx1⟩ ⊥ · · · ⊥ ⟨Rxn⟩

where n = dimV . As we assume V is regular, we know that Q(xi) ̸= 0 for all 1 ≤ i ≤ n. Since R∗/(R∗)2 is
a group of order 2, with coset representatives {±1}, we see that we may take Q(xi) ∈ {±1} without loss of
generality. By reordering, we may suppose that Q(xi) = 1 for 1 ≤ i ≤ p, and Q(xi) = −1 for p + 1 ≤ i ≤ n.
Here, 0 ≤ p ≤ n. Thus, we can always decompose any regular real quadratic space as an orthogonal sum of a
maximal positive definite space and a maximal negative definite space. We see here that p is the dimension of
this maximal positive definite. However, a priori, this p could depend on our choice of orthogonal basis.
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Lemma 2.3 (Sylvester’s Law of Inertia). The dimension of the maximal positive definite subspace of a real
regular quadratic space V is an invariant of V .

Proof. Suppose P and P ′ are maximal positive definite subspaces of V , and suppose without loss of generality
that dimP ≤ dimP ′. By the previous discussion, we know that

P = ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩︸ ︷︷ ︸
dimP times

and
P ′ = ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩︸ ︷︷ ︸

dimP ′ times

.

We thus have an obvious isometry ι : P ↪→ P ′ taking the i’th copy of ⟨1⟩ in P to the i’th copy of ⟨1⟩ in P ′. By
Witt’s extension theorem, we can find σ ∈ O(V ) such that σ|P = ι. Notice that σ−1(P ′) is a positive definite
subspace of V such that P ⊆ σ−1(P ′). By maximality of P , we have P = σ−1(P ′). Hence,

dimR P = dimR σ
−1(P ′) = dimR P

′,

as required.

By replacing Q with −Q, we see that we have also proven the following.

Corollary 2.3.1. The dimension of the maximal negative definite subspace of a real regular quadratic space V
is an invariant of V .

The above lemma and corollary motivate the following definition.

Definition. The positive index ind+V of a regular quadratic space V over R is the dimension of the maximal
positive definite subspace. The negative index ind+V of a regular quadratic space V over R is the dimension of
the maximal negative definite subspace.

Clearly, we have ind+V = dimV if and only if V is positive definite, and ind− = dimV if and only if V is
negative definite.

Exercise 2.4. Prove that indV = min{ind+V, ind−V } and that dimV = ind+V + ind−V .

Putting all this together, we have the following.

Theorem 2.5. Two regular quadratic spaces V and V ′ over R are isomorphic if and only if ind+V = ind+V ′

and ind−V = ind−V ′.

Thus, up to isomorphism, there are only n + 1 isomorphism classes of regular quadratic spaces over R of
dimension n. Every regular quadratic space is the orthogonal sum of a maximal positive definite and a maximal
negative definite quadratic space (we consider the zero space as both positive and negative definite). Moreover,
V is isotropic if and only if V is indefinite.

Definition. The signature of a real regular quadratic space V is the pair of integers (ind+V, ind−V ).

More generally, we have the following result.

Exercise 2.6. Suppose V and V ′ are two regular quadratic spaces over R. Then, there exists an isometry
σ : V ↪→ V ′ if and only if ind+V ≤ ind+V ′ and ind−V ≤ ind−V ′.

Using the above classification, the following result is immediate.

Theorem 2.7. Let V be a regular quadratic space. Then,

Q(V ) =


R>0 if V positive definite,

R<0 if V negative definite,

R otherwise.
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2.3 k a Finite Field

Finally, we consider the case of k a finite field. Then, k = Fq where q is a prime or a power of a prime. Under
our characteristic assumption, we assume q is odd.

Consider the homomorphism
φ : k∗ → (k∗)2, x 7→ x2.

Obviously φ is surjective. Since the roots of x2−1 are precisely ±1 (which are distinct as q is odd), it follows that
kerφ = {±1}. Hence k∗/(k∗)2 is again a group of order 2. Fix a non-trivial coset representative ϵ ∈ k∗ \ (k∗)2.

Lemma 2.8. ⟨ϵ⟩ ⊥ ⟨ϵ⟩ ∼= ⟨1⟩ ⊥ ⟨1⟩.

Proof. Let V = kx ⊥ ky where Q(x) = ϵ = Q(y). Now, the sets (k∗)2 and

1− ϵ(k∗)2 = {1− ϵα2 : α ∈ k, α ̸= 0}

are both finite subsets of k∗ of cardinality q−1
2 . These two sets are also not equal, since 1 ∈ (k∗)2 but 1 /∈

1 − ϵ(k∗)2. It follows that (1 − ϵ(k∗)2) \ (k∗)2 is non-empty, i.e. there exists α ∈ k∗ such that 1 − ϵα2 ∈
k∗ \ (k∗)2 = ϵ(k∗)2. Thus, we have 1 − ϵα2 = ϵβ2, and so v := αx + βy ∈ V and w = βx − αy ∈ V satisfy
Q(v) = 1 = Q(w) and B(v, w) = 0. Hence, we have V ∼= ⟨1⟩ ⊥ ⟨1⟩.

As before, we can write
V = ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩︸ ︷︷ ︸

p times

⊥ ⟨ϵ⟩ ⊥ · · · ⊥ ⟨ϵ⟩︸ ︷︷ ︸
n−p times

.

By the lemma, we can suppose without loss of generality that n − p ≤ 1. We have thus proven the following
theorem.

Theorem 2.9. Any regular quadratic space V over a finite field k of odd characteristic has a splitting

V ∼= ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩︸ ︷︷ ︸
(n−1) times

⊥ ⟨discV ⟩ .

In particular,

1. there are essentially two regular quadratic spaces over k of given dimension; and

2. two regular quadratic spaces over k are isomorphic if and only if they have the same dimension and
discriminant.

Exercise 2.10 (Chevalley’s Theorem for Quadratic Polynomials). Show that any regular quadratic space over
a finite field of dimension n ≥ 3 is always isotropic. Hence, or otherwise, prove the d = 2 case of the following
theorem (this special case was originally due to Dickson).

Theorem (Chevalley (1935)). Let n, d ∈ N be such that n > d. Then, every polynomial of total degree d in n
variables has a non-trivial zero (i.e. a zero not in Fn

q \ {(0, ..., 0)}).

3 Algebraic Invariants

In the previous section, using elementary methods, we were able to completely classify all quadratic spaces over
certain nice fields. The classification used some simple invariants of quadratic spaces, such as the dimension,
the discriminant, and the index. However, for more general fields, we need more sophisticated invariants.

Throughout this chapter, an algebra is assumed to be both unital and associative (see the appendix).

A division algebra over k is an algebra D over k such that for every non-zero element x ∈ D there exists
y ∈ D such that

xy = yx = 1D.

Notice that a commutative division algebra over k is simply a field extension of k. Thus, division algebras are
‘non-commutative’ field extensions of k.
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3.1 Quaternion Algebras

In order to define the Hasse algebra, we need to understand quaternion algebras over k.

Definition. Given a field k and elements α, β ∈ k∗, the quaternion algebra is the 4-dimensional k-algebra

(α, β)k := k ⊕ ki⊕ kj⊕ kk

where multiplication is defined by the following multiplication table.

1 i j k

1 1 i j k
i i α k αj
j j −k β −βi
k k −αj βi −αβ

An element of (α, β)0k := ki⊕ kj⊕ kk is called a pure quaternion, and an element of k (viewed as an element of
the quaternion algebra) is called a scalar quaternion.

We say that the k-basis 1, i, j,k of (α, β)k is the defining basis of (α, β)k.

The conjugate of an element x := x0 + x1i+ x2j+ x3k ∈ (α, β)k is

x := x0 − x1i− x2j− x3k.

The norm and trace of x is
N(x) = xx = (x20 − αx21 − βx22 + αβx23) ∈ k

and T (x) := x+ x = 2x0 ∈ k.

One checks that conjugation on any quaternion algebra is a k-linear anti-isomorphism preserving 1. If k′ is a
field extension of k, then clearly

(α, β)k ⊗k k
′ ∼= (α, β)k′ .

Example 3.1. The classical quaternions H are (−1,−1)R. This is a division algebra.

Example 3.2. The matrix algebra M2(k) is a quaternion algebra, isomorphic to (−1, 1)k. A defining basis of

this quaternion algebra is ( 1 0
0 1 ) ,

(
0 1
−1 0

)
, ( 0 1

1 0 ) ,
(
1 0
0 −1

)
. Conjugation is given by

(
a b
c d

)
=
(

d −b
−c a

)
. Thus, the

trace of the quaternion algebra coincides with the usual trace of a matrix and the norm is the determinant.

Remark 3.3. It is possible for (α, β)k to be isomorphic to (γ, δ)k even if (α, β) ̸= (γ, δ). For instance, we trivially
have

(α, β)k ∼= (β,−αβ)k ∼= (−αβ, α)k

by simply permuting î, ĵ, k̂.

Exercise 3.4. Let x be an element of a quaternion algebra. Then x is invertible if and only if Nx ∈ k∗. If this
condition is satisfied, then x−1 = (Nx)−1x.

Remark 3.5. In particular, i, j,k are invertible. This is why we require α and β to be both non-zero; otherwise
the quaternion algebra starts behaving strangely.

Exercise 3.6. Show that a quaternion x is pure if and only if x2 is scalar.

Exercise 3.7. An algebra isomorphism of one quaternion algebra onto another sends pure quaternions to pure
quaternions, and commutes with conjugation, norms, and traces.

Let A = (α, β)k. Recall that the trace of a quaternion algebra is valued in k, and so we have a bilinear map

B : A×A→ k, B(x, y) := 1
2T (xy).

A computation shows that the corresponding quadratic form is simply

Q : A→ k, Q(x) = N(x).
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Thus, we can view the underlying k-vector space of A as a quaternary quadratic space. We abuse notation by
writing A for the corresponding quadratic space as well. We let A0 denote the ternary quadratic subspace of
pure quaternions. A quick computation shows that 1, i, j,k is an orthogonal basis for A, and that in this basis
we have

A ∼= ⟨1⟩ ⊥ ⟨−α⟩ ⊥ ⟨−β⟩ ⊥ ⟨αβ⟩ .

Since discA = α2β2(k∗)2 = (k∗)2, A is a regular quadratic space. The following results show how this quadratic
space structure completely determines properties of the quaternion algebra. The proofs of these results are
straightforward.

Proposition 3.8. Let A and B be two quaternion algebras. The following are equivalent.

1. A and B are isomorphic as k-algebras.

2. A and B are isomorphic as quadratic spaces.

3. A and B (the subspace of pure quaternions) are isomorphic as quadratic spaces.

Proof. That (1) =⇒ (2) follows simply because the quadratic space structure comes from the algebra structure.
If (2) holds, then we have an isomorphism of quadratic spaces

⟨1⟩ ⊥ A0 ∼= A ∼= B ∼= ⟨1⟩ ⊥ B0.

Witt’s extension theorem then implies (3).

Now suppose (3). Suppose σ : A0 ∼= B0 be the given quadratic space isomorphism. Write A = k1A ⊕ kiA ⊕
jA ⊕ kA, and set x = σ(iA) and y = σ(jA). Note that x and y are pure quaternions in B.

We show first that x2 = α. Since σ is an isometry, we know that

QB(x) = QB(σiA) = QA(iA) = iAiA = −i2A = −α.

On the other hand, QB(x) = xx by definition of QB . Since x is a pure quaternion, we know that x = −x and
so −x2 = xx = −α. Hence x2 = α. Similarly, it can be checked that y2 = β.

Next, as σ is an isometry, we know that

1
2 (xy + yx) = BB(x, y) = BB(σiA, σjA) = BA(iA, jA) = 0,

and so xy + yx = 0. However, x and y being pure quaternions means that x = −x and y = −y. We thus see
that xy = −yx. Since B = k1B ⊕B0, we can write

xy = a1B + v

for some a ∈ k and some v ∈ B0. Taking conjugates, we see that

a1B − v = a1B + v = xy = yx = (−y)(−x) = yx = −xy = −a1B − v.

Thus a = 0, i.e. xy = −yx is a pure quaternion.

Finally, consider the k-linear map φ : A → B given by φ(1A) = 1B , φ(iA) = x, φ(jA) = y, and φ(kA) = xy.
We claim that φ is also k-multiplicative. A very tedious computation shows that

φ(ξ11A+ξ2iA+ξ3jA+ξ4kA)φ(η11A+η2iA+η3jA+η4kA) = φ
(
(ξ11A+ξ2iA+ξ3jA+ξ4kA)(η11A+η2iA+η3jA+η4kA)

)
for all ξ1, ξ2, ξ3, ξ4, η1, η2, η3, η4 ∈ k, and so φ is multiplicative. Hence it is a k-algebra homomorphism. Since A
is a quaternion algebra and so is central simple (see the next section), it follows that φ is injective. However A
and B have the same dimension, which implies that φ is a k-algebra isomorphism.

Proposition 3.9. Let α, β ∈ k∗. The following are equivalent.

1. (α, β)k is isomorphic as a k-algebra to (1,−1)k.

2. (α, β)k is not a division algebra.
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3. (α, β)k is an isotropic quaternary regular quadratic space.

4. (α, β)0k is isotropic ternary regular quadratic space.

5. ⟨α⟩ ⊥ ⟨β⟩ represents 1.

6. α ∈ Nk′/k(k
′) where k′ := k(

√
β). (Here, Nk′/k denotes the field norm corresponding to a finite field

extension k′/k)

Lemma 3.10 (Basic Manipulation Rules for Quaternion Algebras). Suppose α, β, γ, λ, µ ∈ k∗. We have the
following algebra isomorphisms:

• (1, α)k ∼= (α,−α)k ∼= (α, 1− α)k ∼= (1,−1)k ∼=M2(k).

• (β, α)k ∼= (α, β)k ∼= (αλ2, βµ2).

• (α, β)k ⊗k (α, γ)k ∼= (α, βγ)k ⊗k (1,−1)k.

Exercise 3.11. Using Proposition 3.8, classify all quaternion algebras up to isomorphism for k = R, k = C, and
for k a finite field.

Exercise 3.12. Prove Proposition 3.9. (Hint: when is x ∈ (α, β)k invertible? )

Exercise 3.13. Prove Lemma 3.10, using Proposition 3.8

Exercise 3.14. Let u ∈ (α, β)0k.

1. Show that u is anisotropic if and only if u is invertible in the algebra (α, β)k.

2. Show that if u is anisotropic, then the reflection τu is given by τux = −uxu−1.

3.2 Central Simple Algebras

Quaternion algebras are examples of particularly nice algebras, the central simple algebras.

Definition. A k-algebra A is central if the centre

Z(A) := {z ∈ A : zx = xz for all x ∈ A}

is equal to k (a priori, we have k ⊆ Z(A)).

Definition. A k-algebra A is simple if every k-algebra homomorphism A→ A′ to another k-algebra A′ is either
injective or a constant. In other words, A is simple if A does not contain any non-zero proper two-sided ideal.

Example 3.15. All division algebras are simple. Thus, a central division algebra D over k is a central simple
algebra over k.

Example 3.16. Mn(k), for n ≥ 1, is a central simple algebra.

Example 3.17. If K/k is a field extension, then K is a simple k-algebra. However, the centre of K is K itself.
Hence, the only field that is also a central simple k-algebra is k itself.

Proposition 3.18. Quaternion algebras are central simple algebras.

Proof. Let A denote the quaternion algebra in question. Suppose x = x0 + x1i + x2j + x3k ∈ Z(A). A quick
computation shows that

xi− ix = 2(x2j+ x3k)i, xj− jx = 2(x1i+ x3k)j, and xk− kx = 2(x1i+ x2j)k.

Since x ∈ Z(A), all of these expressions must be zero, and so we see that x1 = x2 = x3 = 0. Thus x ∈ k. Hence,
quaternion algebras are central.

Suppose now that φ : A → A′ is a k-algebra homomorphism that is not injective nor is the zero map. Then
φ(1) = 1 and so k ∩ kerφ = {0}. Let x ∈ kerφ be non-zero, which exists as φ is not injective. If x ∈ k (i.e. if
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x1 = x2 = x3 = 0), we are done. So suppose one of x1, x2, x3 is non-zero, say WLOG that x1 ̸= 0. Then, by
the previous identities, we have

2φ
(
(x1i+ x3k)j

)
= φ(x)φ(j)− φ(j)φ(x) = 0

However, j is invertible in A, and since φ is assumed non-zero, we see that φ(x1i+ x3k) = 0. However

(x1i+ x2k)i+ i(x1i+ x2k) = 2x1i
2,

and so φ(2x1i
2) = 0. This is impossible since x1 ̸= 0 and so 2x2i

2 ∈ k∗.

The following lemma allows us to construct new central simple algebras from old ones.

Lemma 3.19. If A and B are central simple finite dimensional k-algebras, then so is A⊗k B.

Example 3.20. If D is a finite dimensional central division algebra over k and n ≥ 1, thenMn(D) ∼=Mn(k)⊗kD
is a central simple algebra.

In fact, the famous Artin-Wedderburn theorem says that this last example gives us all central simple algebras.
We only need Wedderburn’s contribution to the Artin-Wedderburn theorem.

Theorem 3.21 (Wedderburn). Let A be a central simple k-algebra of finite dimension over k. Then there is a
unique (up to isomorphism) central division algebra D of finite dimension over k and a unique n ≥ 1 such that
A ∼=Mn(D).

For a complete proof, see for instance [OMe73, §52F]

Example 3.22. By Proposition 3.9 and the fact that (−1, 1)k ∼=M2(k), we see that we have already shown the
Artin-Wedderburn theorem for quaternion algebras: every quaternion algebra is either a division algebra, or is
isomorphic to M2(k).

The Artin-Wedderburn theorem allows us to define an equivalence relation on finite-dimensional central simple
algebras over k.

Definition. Suppose A and B are central simple algebras over k. Then, A and B are said to be (Brauer)-
equivalent, written A ∼k B, if their corresponding division algebras (guaranteed by the Artin-Wedderburn
Theorem) are isomorphic k-algebras. The Brauer class of such an algebra A is the equivalence class of the
algebra A under Brauer equivalence; it is written [A].

Brauer equivalence is important for us since Hasse algebras are (finite dimensional) central simple algebras,
and it turns out that the Brauer class of the Hasse algebra is very useful invariant of a regular quadratic space.

Example 3.23. (1,−1)k ∼k k.

Example 3.24. In Lemma 3.10, one of the isomorphisms can be rewritten as (α, β)k ⊗k (α, γ)k ∼k (α, βγ)k.

Since dimkMn(D) = n2 dimkD, the following lemma is obvious.

Lemma 3.25. If A ∼k A
′ for two central simple k-algebras A and A′ such that dimk A = dimk A

′, then A ∼= A′.

We also have the following.

Lemma 3.26. Suppose A,A′, B,B′ are central simple k-algebras of finite-dimension. If A ∼k A
′ and B ∼k B

′,
then A⊗k B ∼k A

′ ⊗k B
′.

Definition. For a field k, the Brauer group Br(k) is the set of Brauer classes of finite dimensional central simple
algebras over k.

By the previous lemma, it is clear that tensor products of k-algebras yields a commutative associative binary
operation on Br(k). Since A⊗k k ∼= A for any algebra A, it follows that the Brauer equivalence class of k acts
as the identity on Br(k). We have the following non-trivial proposition.

Proposition 3.27. For any finite dimensional central simple k-algebra A, the opposite algebra Aop is a finite
dimensional central simple k-algebra satisfying A⊗k A

op ∼=Mn(k) for some n ≥ 1.
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Corollary 3.27.1. Br(k) is an abelian group under the tensor product.

Example 3.28. Br(R) ∼= Z/2Z, generated by the Brauer class of the usual quaternions (−1,−1)R.

Example 3.29 (Wedderburn’s Little Theorem). Br(k) = 0 for k a finite field.

Example 3.30. Br(C) = 0.

This justifies our use of the term ‘Brauer group’ for Br(k). Brauer groups (and their generalisations) play
an important role in algebraic geometry and number theory. For us however, we are only interested in the
subgroup of the Brauer group generated by the Brauer classes of quaternion algebras, i.e. the Brauer classes of
those central simple algebras that are a tensor product of finitely many quaternion algebras.

Notice first that the Brauer class of (α, β)k has order 2 in Br(k); indeed, we have

(α, β)k ⊗k (α, β)k ∼k (α, β2)k ∼= (α, 1)k ∼=M2(k).

It turns out we have a kind of converse.

Theorem 3.31 (Merkurjev-Suslin). The subgroup of the Brauer group Br(k) generated by the Brauer classes
of quaternion algebras over k is Br(k)[2], the subgroup of those elements of Br(k) of order 2.

3.3 The Hasse Algebra

3.3.1 Construction

Suppose V is a regular n-ary quadratic space over k. Fix an orthogonal basis for the moment, and suppose

V ∼= ⟨α1⟩ ⊥ · · · ⊥ ⟨αn⟩

in this basis. Let di := α1 · · ·αi. Write

SV :=

n⊗
i=1

(αi, di)k.

This is clearly a finite dimensional central simple algebra, since each of the (αi, di)k are such.

Definition. The Hasse algebra of V is the k-algebra SV .

Clearly, [SV ] ∈ Br(k)[2].

As of now, the Hasse algebra still depends on the choice of orthogonal basis. We now show that the Hasse
algebra is an honest invariant of V .

Lemma 3.32. Let X,Y be two orthogonal bases for V . Then, there is a chain of orthogonal bases X =
X0, X1, ..., Xr−1, Xr = Y in which each Xi is obtained by altering at most two adjacent basis vectors of Xi−1.

Proof. We prove the lemma by induction on n. The lemma is trivial if n ≤ 2, so suppose n ≥ 3. Write
Y = {y1, ..., yn}. Let C be the set of all orthogonal bases X ′ such that there exists a chain of orthogonal bases
X = X0, X1, ..., Xr = X ′ where each Xi is obtained by altering at most two adjacent basis vectors of Xi−1. We
want to show that Y ∈ C. It is clear that C is non-empty, for instance since X ∈ C.

First, pickX ′ ∈ C such that, writing y1 =
∑

x∈X′ cxx, the set of all x ∈ X ′ with cx ̸= 0 has minimal cardinality
(i.e., in the coordinates with respect to X ′, the vector y1 has the least number of non-zero coordinates). Write
X ′ = {x1, ..., xn}, ordered in such a way so that

y1 = α1x1 + · · ·+ αpxp

where αi ̸= 0 for 1 ≤ i ≤ p. We claim that p = 1. Suppose not. If p = 2, notice that

Q(α1x1) +Q(α2x2) = Q(y1) ̸= 0

by regularity of V . If p ≥ 3, then Q(α3x3) ̸= 0 (we have Q(x3) ̸= 0 by regularity). It follows that

1

2

((
Q(α1x1) +Q(α3x3)

)
+
(
Q(α2x2) +Q(α3x3)

)
−
(
Q(α1x1) +Q(α2x2)

))
= Q(α3x3) ̸= 0,
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and so at least one of Q(α1x1) +Q(α3x3), Q(α2x2) +Q(α3x3), Q(α1x1) +Q(α2x2) is non-zero. Without loss of
generality, we may thus suppose that Q(α1x1) +Q(α2x2) ̸= 0 with p ≥ 2.

Set x1 = α1x1 +α2x2, x2 = x2 − B(x1,x2)
Q(x1)

x1. Then X
′
:= {x1, x2, x3, ..., xn} is obtained from X ′ by changing

at most two vectors, and so X
′ ∈ C. However, y1 has exactly p− 1 coordinates non-zero in X

′
. This contradicts

the minimality of X ′ and p. Hence, we have p = 1.

We have thus shown that there exists a basis X ′ ∈ C such that y1 ∈ X ′. Write X ′ = {y1, z2, ..., zn}. Then we
have

kz2 ⊥ · · · ⊥ kzn = ky1 ⊥ · · · ⊥ kyn =: V ′

with dimV ′ = n− 1. By the inductive hypothesis, there exists a chain of the required type from {z2, ..., zn} to
{y2, ..., yn}. There thus exists a chain of the required type from X to Y , i.e. Y ∈ C.

Proposition 3.33. SV , up to isomorphism, does not depend on the choice of orthogonal basis.

Proof. For n = 1, the result is obvious, so we suppose n > 1. We need to compare SV in two orthogonal bases
x1, ..., xn and x′1, x

′
2, x

′
3, ..., x

′
n. Write

V ∼= ⟨α1⟩ ⊥ ⟨α2⟩ ⊥ · · · ⊥ ⟨αn⟩ and V ∼= ⟨α′
1⟩ ⊥ ⟨α′

2⟩ ⊥ ⟨α′
3⟩ ⊥ · · · ⊥ ⟨α′

n⟩

in these two bases. By the previous lemma, it suffices to suppose that xj = x′j for j ̸= i, i + 1, for some
1 ≤ i ≤ n − 1. We must have kxi ⊥ kxi+1

∼= kx′i ⊥ kx′i+1. Note that αiαi+1 and α′
iα

′
i+1 are both the

discriminant of this binary quadratic space, and so αiαi+1 = α′
iα

′
i+1λ

2 for some λ ∈ k∗. Writing dj = α1 · · ·αj

and d′j = α′
1 · · ·α′

j , we then see that dj = d′j for 1 ≤ j < i and dj = d′jλ
2 for i+ 1 ≤ j ≤ n. Thus, we have

⊗1≤j≤n,j ̸=i,i+1(αi, di)k ∼= ⊗1≤j≤n,j ̸=i,i+1(α
′
i, d

′
i)k.

It remains to show that
(αi, di)k ⊗k (αi+1, di+1)k ∼= (α′

i, d
′
i)k ⊗k (α′

i+1, d
′
i+1)k.

Now, using Lemma 3.10 throughout, we have

(αi, di)k ⊗k (αi+1, di+1)k = (αi, di−1αi)k ⊗k (αi+1, di−1αiαi+1)k ∼= (αi,−di−1)k ⊗k (αi+1,−di−1αi)k

∼k (αi,−di−1)k ⊗k (αi+1, αi)k ⊗k (αi+1,−di−1
)k

∼= (αiαi+1,−di−1)k ⊗k (αi, αi+1)k.

Similarly

(α′
i, d

′
i)k ⊗k (α′

i+1, d
′
i+1)k ∼k (αiαi+1λ

2,−di−1)k ⊗k (α′
i, α

′
i+1)k

∼= (αiαi+1,−di−1)k ⊗k (α′
i, α

′
i+1)k.

However, notice that (αi, αi+1)k ∼= (α′
i, α

′
i+1)k since kxi ⊥ kxi+1

∼= kx′i ⊥ kx′i+1 (see also Proposition 3.8).
Since these are the same binary space, we have (αi, αi+1)k ∼= (α′

i, α
′
i+1)k. Hence, we see that

(αi, di)k ⊗k (αi+1, di+1)k ∼k (α′
i, d

′
i)k ⊗k (α′

i+1, d
′
i+1)k.

Since both sides have dimension 4 over k, they are isomorphic, and we are done.

The following exercises show how to manipulate the Hasse algebra.

Exercise 3.34. Let V = ⟨α1⟩ ⊥ · · · ⟨αn⟩. Show that

SV ∼k

⊗
1≤i≤j≤n

(αi, αj)k.

Exercise 3.35. Let K/k be any field extension. Show that

S(V ⊗k K) ∼= SV ⊗k K.

Exercise 3.36. Suppose U and W are regular subspaces of V such that V = U ⊥W . Show that

SV ∼k SU ⊗k (discU,discW )k ⊗k SW.

(Since (αλ2, βµ2)k ∼= (α, β)k, the quaternion algebra (discU,discW )k makes sense up to isomorphism.)
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3.3.2 Applications

We now use the Hasse algebra (or, more specifically, the Brauer class [SV ] ∈ Br(k)[2] of the Hasse algebra), to
prove some classification results.

Theorem 3.37. Suppose V and W are regular n-ary quadratic spaces with 1 ≤ n ≤ 3. Then V is isomorphic
to W as a quadratic space if and only if

dimV = dimW (= n), discV = discW, SV ∼k SW.

Proof. For n = 1, the quadratic space is completely determined by the discriminant, and so the theorem is
trivial. Of course, we have already shown the necessity of these invariants. We thus need to prove sufficiency,
i.e. we assume discV = discW and SV ∼k SW .

Suppose n = 3. If discV = α(k∗)2, then by replacing QV and QW by 1
αQV and 1

αQW respectively, we see
that it suffices to assume discV = discW = 1. Write

V ∼= ⟨−α⟩ ⊥ ⟨−β⟩ ⊥ ⟨αβ⟩ and W ∼= ⟨−γ⟩ ⊥ ⟨−δ⟩ ⊥ ⟨γδ⟩ .

We thus have V ∼= (α, β)0k and W ∼= (γ, δ)0k as ternary quadratic spaces over k. However, one can compute that

(−1,−1)k ⊗k SV ∼k (α, β)k.

Similarly (−1,−1)k ⊗k SW ∼k (γ, δ)k. Since SV ∼k SW , we thus have (α, β)k ∼k (γ, δ)k. For dimension
reasons, we thus have (α, β)k ∼= (γ, δ)k and hence that V ∼=W .

Finally, suppose n = 2. Since V and W have the same invariants, one can check that so so V ⊥ ⟨1⟩ and
W ⊥ ⟨1⟩. Thus, by the previous argument, we have V ⊥ ⟨1⟩ ∼= W ⊥ ⟨1⟩. By Witt’s cancellation theorem, we
have V ∼=W .

Exercise 3.38. Show that a regular ternary quadratic space over k is isotropic if and only if SV ∼k (−1,−1)k.

Theorem 3.39. Suppose k has the property that every regular quinary quadratic space over k is isotropic. Let
V and W be any regular quadratic spaces over k. Then V ∼=W if and only if

dimV = dimW, discV = discW, SV ∼k SW.

Proof. As before, we just need to prove sufficiency. Let n = dimV = dimW . We use induction on n. The
case of n ≤ 3 the result holds without the assumption on k. So assume n ≥ 4. Since V ⊥ ⟨−1⟩ is a regular
space of dimension at least 5, by our assumption on k, V ⊥ ⟨−1⟩ is isotropic. Exercise 1.18 implies that V
represents 1. We thus have a splitting V ∼= V ′ ⊥ ⟨1⟩ for some n − 1 dimensional regular quadratic space V ′.
It is easy to see that [SV ] = [SV ′] and discV = discV ′. Similarly, we can write W = W ′ ⊥ ⟨1⟩ for W ′ a
regular n− 1 dimensional space with [SW ] = [SW ′] and discW = discW ′. Thus we see that [SV ′] = [SW ′] and
discV ′ = discW ′. By induction, it follows that V ′ ∼=W ′ and thus V ∼=W .

4 Quadratic Spaces over the p-Adics

4.1 Valuations and Complete Fields

Definition. A valuation on a field k is a map |.| : k → R≥0 satisfying the following three axioms.

(V1) |α| = 0 if and only if α = 0.

(V2) |αβ| = |α| · |β| for all α, β ∈ k.

(V3) (triangle inequality) |α+ β| ≤ |α|+ |β| for all α, β ∈ k.

A valuation is said to be non-archimedean (or is an ultrametric) if it further satisfies

(V3’) |α+ β| ≤ max{|α|, |β|} for all α, β ∈ k.
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If a valuation does not satisfy (V3’), then it is said to be archimedean.

A valuated field is simply a field equipped with a valuation.

Remark 4.1. It is easy to see that (V3’) implies (V3).

Example 4.2. Let k be any subfield of C (say k = Q,R, or C for instance). Then the usual absolute value is a
valuation on k, often denoted by |.|∞. It is an archimedean valuation.

Example 4.3. Consider k = Q and fix a prime p. Then, we define |.|p : Q → R≥0 by∣∣∣pr a
b

∣∣∣
p
= p−r

where r ∈ Z, and a, b ∈ Z are such that gcd(a, b) = 1 and p ∤ a, b. This is the p-adic valuation. One checks that
this is a non-archimedean valuation.

In fact, for any number field K and any prime ideal p of its ring of integers OK , we can similarly define a
non-archimedean valuation |.|p on K.

Example 4.4. Given any field k, we have the trivial valuation |.|triv defined by |0|triv = 0 and |α|triv = 1 for
α ̸= 0.

Now, notice that (V1) and (V3) imply that d(x, y) := |x−y| is a metric on the field K. In particular, we have
a nice topology on k. However this topology can behave unexpectedly for non-archimedean fields; for instance,
any point in a ball of a certain radius is the centre of the ball.

Definition. A valuated field k is said to be complete if k equipped with the induced metric is complete as a
metric space.

Example 4.5. The fields R and C equipped with |.|∞ are complete. The trivial valuation is always complete.

We have some obvious properties that one can check immediately.

Lemma 4.6. Let k be a field with a valuation |.|.

1. |1| = 1 = | − 1|.

2. k is a topological field, i.e. addition, multiplication, negation, and inverses are all continuous with respect
to the induced topology on k.

3. If |.| is non-archimedean and |α| ≠ |β| for α, β ∈ k, then |α+ β| = max{α, β}.

4. If |.| is non-archimedean and α1, ..., αr ∈ k are such that |αi| < |α1| for 2 ≤ i ≤ r, then

|α1 + · · ·+ αr| = |α1|.

5. |.| is non-archimedean if and only if the set {|n| : n ∈ Z} is bounded (here, we view Z → k via 1 7→ 1k).

Exercise 4.7. Prove the above lemma.

Recall that given any metric space (X, d), there exists a unique metric space (X̃, d̃), called the completion of

X, such that X ↪→ X̃ is a dense subset of X̃ and such that d̃|X = d. Since a valuation induces a metric structure

on the underlying field k, we can embed k as a dense subset of a unique metric space (k̃, d̃). Identifying k ⊂ k̃,

we can then define |̃.| : k̃ → R≥0 via |̃α| = d̃(0, α) for all α ∈ k̃.

Proposition 4.8. In the above setting, the field structure on k extends to induce a field structure on the metric

space completion k̃, so that k̃ is a topological field containing k. The map |̃.| : k̃ → R≥0 is in fact a valuation.
It is non-archimedean if and only if the original valuation |.| on k was non-archimedean.

Thus, any valuated field (k, |.|) can be embedded as a dense subset of a complete valuated field (k̃, |.|).
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While the proof is omitted, it follows by tedious checking using the usual construction of k̃ as an equivalence
class of sequences in k. See for example the proof in [Cas78, Chapter 3, Lemma 1.2].

Definition. The completion Qp of Q equipped with the valuation |.|p from Example 4.3 is called the field of
p-adic numbers.

Finally, let us discuss equivalence of valuations.

Definition. Two valuations on a field k are said to be equivalent if they induce the same topology on k.

Exercise 4.9. Suppose |.| is a valuation on k equivalent to the trivial valuation. Then, show that |.| is in fact
the trivial valuation as well.

Exercise 4.10. Suppose |.|, |.|′ are two valuations on a field k. Prove that the following are equivalent.

1. |.|′ and |.| are equivalent valuations.

2. For any α ∈ k, we have |α|′ < 1 if and only if |α| < 1.

3. There exists ρ > 0 such that |α|′ = |α|ρ for all α ∈ k.

Definition. An equivalence class of valuations on a field k not containing the trivial valuation is called a place
of k.

Remark 4.11. Most often, this terminology is usually reserved for k a global field, i.e. for k a finite extension of
Q or Fp[t] for p prime.

We now list some important results on valuations and places of a field. Since the proofs are not really relevant,
we shall omit them. Chapter 1 of [OMe73] contains all the proofs.

Proposition 4.12. There is exactly one archimedean place on Q, corresponding to the usual archimedean
valuation |.|∞ on Q.

Definition. The unique archimedean place on Q is referred to as the infinite place on Q.

Theorem 4.13 (Weak Approximation). Suppose |.|i (for 1 ≤ i ≤ r) are a finite number of inequivalent non-
trivial valuations on a field k. For each 1 ≤ i ≤ r, fix αi ∈ k. Then, for every ϵ > 0 there exists α ∈ k such that
|α− αi|i < ϵ for 1 ≤ i ≤ r.

Theorem 4.14 (Ostrowski). Up to isomorphism of complete valuated fields, there are exactly two complete
archimedean fields, namely R and C.

Definition. The ordinary absolute value on a complete archimedean field k is the valuation on k coinciding
with the usual absolute value on R or C under any isomorphism k ∼= R or k ∼= C.

An archimedean valuation |.| on k is real (resp. complex ) if the completion of k is R (resp. C).

Definition. A complete field is said to be a local field if the valuation is not the trivial valuation and the
topology is locally compact (i.e. every element has a compact neighbourhood).

Proposition 4.15. The only local fields of characteristic 0 are R, C, or finite field extensions of Qp. The
valuations in the non-archimedean case are discrete, i.e. the image in R≥0 of the field under the valuation is a
discrete set.

Theorem 4.16 (Ostrowski). The only places on Q are the (archimedean) infinite place, and the (non-archimedean)
places corresponding to the p-adic valuations |.|p. Moreover, |.|p is not equivalent to |.|q if and only if p ̸= q.

4.2 Non-Archimedean Local Fields

We now take an in-depth look at non-archimedean local fields of characteristic 0. The most basic example of
such a field is Qp for p a prime.
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Let K be a non-archimedean local field with valuation |.|. Set

OK := {α ∈ K : |α| ≤ 1},
mK := {α ∈ K : |α| < 1}.

Definition. OK is called the ring of integers of K.

Example 4.17. The ring of integers of Qp is denoted by Zp, the ring of p-adic integers. One can check that
mQp

= pZp.

Proposition 4.18. The subset OK is actually a subring of K, and mK is a maximal ideal of OK . In fact, OK

is a local ring, with unique maximal ideal mK .

This result justifies calling OK the ‘ring of integers’ of K. Since OK is a local ring, it is in particular a PID.
The group O∗

K of units of OK satisfies O∗
K = OK \mK , and so |u| = 1 for all units u of OK .

Definition. A uniformiser of K is any generator of the principal ideal mK .

The residue field of K is the field κK := OK/mK . The canonical projection map OK → κK is denoted by
α 7→ α.

It is a fact that κK is a finite field for K a non-archimedean local field. In particular, it has characteristic p
for some prime p. This is often referred to as the residue characteristic.

Example 4.19. A uniformiser of Qp is p. The residue field of Qp is Fp.

Pick a uniformiser π. One can check easily that every non-zero element α ∈ K∗ can be written as

α = πr · u

for some u ∈ O∗
K and some r ∈ Z. This decomposition is unique for a fixed choice of π. This integer r is often

referred to as the order of α, written r = ordKα.

In particular, the valuation is discretely valued in the sense that the image of the group homomorphism

|.| : K∗ → R>0

is cyclic and generated by |π|. Notice that |π| ∈ R>0 only depends on |.| and not on our choice of uniformiser.
Since we only care about valuations up to equivalence, it doesn’t matter what the exact value of |π| is. We can
thus choose a specific normalization.

Definition. The valuation |.| of a non-archimedean local field is said to be normalised if |π| = 1
#κK

for any
uniformiser π.

It is clear that any non-archimedean local field has a unique normalised valuation.

Example 4.20. The usual p-adic valuation |.|p introduced previously is the normalised valuation of Qp.

Proposition 4.21. Let S be any set of coset representatives of OK/mK (in particular, S is in bijection with
κK). Suppose that the coset representative of 0 +mK in OK is chosen to be 0. Let π be a uniformiser of K.

Then, any element α ∈ OK can be written uniquely as

α =
∑
i≥0

ciπ
i

for ci ∈ S (here, the power series converges with respect to the valuation |.|).

In particular, every element of Zp is of the form
∑

i≥0 cip
i for a unique choice ci ∈ {0, 1, 2, ..., p− 1}.

Proof Sketch. We prove the special case for Zp. Set S = {0, 1, 2, ..., p− 1}. Let α ∈ Zp be fixed. Then α ∈ Fp,
and so we can find a unique c0 ∈ S such that α = c0. This is equivalent to α − c0 ∈ pZp, and so we write
α = c0 + pα1 for a unique α1 ∈ Zp. We can continue this process with α1, and write α1 = c1 + pα2 for a unique
c1 ∈ S and unique α2 ∈ Zp. Continuing, we have α2 = c2 + pα3, α3 = c3 + pα4, etc. The result follows.
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The following theorem gives an easy way to construct elements of OK .

Theorem 4.22 (Hensel’s Lemma). Suppose K is a non-archimedean local field with valuation |.|. Let f(x) ∈
OK [x] be a polynomial. Suppose there exists α ∈ OK such that |f(α)| < |f ′(α)|2. Then, there exists β ∈ OK

such that β − α ∈ mK and such that f(β) = 0.

Here, f ′(x) denotes the formal derivative of a polynomial f ∈ OK [x]. We omit the proof, though a proof for
the case of K = Qp is given in [Cas78].

Corollary 4.22.1 (Local Square Theorem). Suppose α ∈ O∗
K is such that |α − 1| < |4|. Then α is a perfect

square in O∗
K , i.e. α = β2 for some β ∈ O∗

K .

In particular, if α ∈ Zp satisfies

|α− 1|p ≤

{
1
p if p odd,
1
8 if p = 2,

then α is a perfect square in Zp.

Proof. This follows immediately from Hensel’s Lemma applied to the polynomial f(x) = x2 − α.

The following corollary is left as an exercise.

Corollary 4.22.2. Suppose K is a non-archimedean local field with uniformiser π, and let α ∈ K∗. Then
α ∈ (K∗)2 if and only if r := ordKα is even and (α/πr) ∈ κK is a perfect square.

Exercise 4.23. Using Hensel’s Lemma, prove Corollary 4.22.2.

Corollary 4.22.2, along with some basic modular arithmetic, gives us the following result.

Corollary 4.23.1. • Q∗
2/(Q∗

2)
2 = ⟨2⟩ × ⟨−1⟩ × ⟨5⟩ is isomorphic as a group to (Z/2Z)3.

• for p an odd prime, let r ∈ Z be any choice of quadratic non-residue (i.e. r /∈ (F∗
p)

2). Then Q∗
p/(Q∗

p)
2 =

⟨p⟩ × ⟨r⟩ is isomorphic as a group to (Z/2Z)2.

In fact, one can use Hensel’s Lemma to prove the following generalisation of the previous corollary.

Corollary 4.23.2. If K has odd residue characteristic, then O∗
K/(O∗

K)2 is a group of order 2. Thus, K∗/(K∗)2

is a group of order 4.

Remark 4.24. For K a non-archimedean local field with residue characteristic equal to 2, it turns out that the
group K∗/(K∗)2 has order 4(#κK)ordK2.

Exercise 4.25. Show that Z∗
2 = (Z∗

2)
2 ∪ 3(Z∗

2)
2 ∪ 5(Z∗

2)
2 ∪ 7(Z∗

2)
2. If α ∈ Z∗

2 and a ∈ {1, 3, 5, 7}, show moreover
that α ∈ a(Z∗

2)
2 if and only if α ≡ a (mod 8).

Exercise 4.26. Suppose p is odd. Let a1, a2, a3 ∈ Qp be such that |a1|p = |a2|p = |a3|p. Show that the quadratic
space V = ⟨a1⟩ ⊥ ⟨a2⟩ ⊥ ⟨a3⟩ is regular and isotropic.

With the theory of non-archimedean local fields somewhat set up, we now go back to studying quadratic spaces
over non-archimedean local fields. If the residue characteristic is odd, then the we already know everything
about quadratic forms over the residue field. Due to results like Hensel’s lemma, we should be able to deduce
facts about quadratic spaces over such non-archimedean local fields. However, for residue characteristic 2, we
have no such hope. Quadratic forms behave very strangely in characteristic 2, and so we need to modify the
previous strategy to understand quadratic forms over such non-archimedean local fields.

This motivates distinguishing non-archimedean local fields into two types.

Definition. A non-archimedean local field is said to be a dyadic local field if its residue characteristic is odd.
Otherwise, it is said to be non-dyadic local field.

Note that K is dyadic if and only if 0 < |2| < 1.
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4.3 Quaternion Algebras over Non-Archimedean Local Fields

Suppose that K is a non-archimedean local field of characteristic 0; for instance, K = Qp. Let OK be its ring
of integers, mK its unique maximal ideal, and κK = OK/mK its residue field. Set e = ordK2; then e = 0 for K
non-dyadic while e ≥ 1 for K dyadic.

Recall the Brauer group; we know that Br(K)[2] contains the Brauer class of all quaternion algebras. It turns
out we can determine Br(K) completely.

Theorem 4.27 ((Corollary of) Local Class Field Theory). Br(K) ∼= Q/Z.

Corollary 4.27.1. Br(K)[2] ∼= Z/2Z.

In particular, local class field theory implies that there are exactly two division algebras over K, namely K
itself and another non-commutative division algebra. We try to prove this fact directly, without using local
class field theory.

Definition. Call a unit ∆ ∈ O∗
K distinguished if ∆+m2e

K is a square in the ring OK/m
2e
K , but ∆ is not a square

in OK/m
2e+1
K .

In other words, ∆ ∈ O∗
K is distinguished if there exists ϵ ∈ O∗

K with ∆− ϵ2 ∈ m2e
K , but no such ϵ exists that

satisfies ∆− ϵ2 ∈ m2e+1
K .

Example 4.28. If K is non-dyadic, we know already that κ∗K/(κ
∗
K)2 is of order 2, and it is easy to see that

∆ ∈ O∗
K is such that ∆ /∈ (κ∗K)2.

Example 4.29. If K = Q2, we can take ∆ = 5, since 5 ≡ 1 (mod 4) is a square, but 5 is not a square in Z/8Z.

Lemma 4.30. ∆(O∗
K)2 is an invariant of the field K, i.e. given any other distinguished unit ∆′ ∈ O∗

K , there
exists ϵ ∈ O∗

K such that ∆′ = ∆ϵ2.

Proof. For K non-dyadic, this simply follows from the fact that O∗
K/(O∗

K)2 is a group of order 2. Suppose
K = Q2. Then e = 1. If ∆ is any distinguished element, then ∆ is a square modulo 4 but not modulo 8. Thus
∆ ≡ 1 (mod 4) and ∆ ̸≡ 1 (mod 8). These two imply that ∆ ≡ 5 (mod 8), and hence that ∆ ∈ 5(Z∗

2)
2.

Remark 4.31 (for those who know algebraic number theory). In short, it turns out that ∆ is distinguished if
and only if K(

√
∆) is a quadratic unramified extension of K. In particular, since there is a unique quadratic

unramified extension of K, it actually follows immediately that ∆(K∗)2 is an invariant of the field K.

Lemma 4.32. Let V be a binary quadratic space over K. Let ∆ ∈ OK denote any distinguished unit. Suppose
discV = πu(K∗)2 for some uniformiser π of K and some u ∈ O∗

K . If γ ∈ K∗, then V represents either γ or
γ∆, but not both.

Proof. By replacing the quadratic form Q with 1
γQ, we may assume without loss of generality that γ = 1. Since

discV = πu(k∗)2, we can write V = ⟨ϵ⟩ ⊥ ⟨δπ⟩ for some ϵ, δ ∈ O∗
K .

Let us show that V represents at least one of 1 or ∆. For K non-dyadic, we know already that O∗
K =

(O∗
K)2 ⊔∆(O∗

K)2, and so ⟨ϵ⟩ represents either 1 or ∆. We now prove this for K = Q2, so that ∆ ∈ 5(Z∗
2)

2. It
suffices to assume that ϵ ∈ {1, 3, 5, 7}. If ϵ = 1 or ϵ = 5, the claim follows immediately. We claim that ϵ ∈ {3, 7}
cannot occur. Write ϵ1 = ϵ−1

2 . Choose λ ∈ Z∗
2 such that λ2δ ≡ −ϵ1 (mod 2). One can then compute that V

represents 1 + 2ϵ1 + 2δλ2. However, 1 + 2ϵ1 + 2δλ2 ≡ 1 (mod 4), and we are done.

We now need to show that V cannot represent both 1 and ∆ simultaneously. Suppose it did. Then we would
be able to write

V ∼= ⟨1⟩ ⊥ ⟨πu⟩ ∼= ⟨∆⟩ ⊥ ⟨∆πu⟩ .
Thus ∆ = ξ2 + η2πu for some ξ, η ∈ K. Then

1 = |ξ2 + η2πu| = max{|ξ|2, |uπη2|}.

It follows that ξ has to be a unit and η an integer. Hence, ∆/ξ2 = 1 + uπβ2 for some β ∈ OK . For K = Q2,
this is impossible, since the right hand side is 1 (mod 8) whereas the left hand side is 5 (mod 8). For K dyadic,
this implies that ∆ ∈ (κ∗K)2, which is impossible.
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Proposition 4.33. Let π be any uniformiser and ∆ any distinguished unit of K. Any quaternion algebra is
isomorphic to either M2(k) ∼= (π, 1)K or to the division algebra (π,∆)K .

Proof. Lemma 4.32 says that ⟨π⟩ ⊥ ⟨∆⟩ does not represent 1. It follows from Proposition 3.9 that (π,∆)K is a
division algebra. By Proposition 3.9 again, it suffices to show that a quaternion algebra A that is also a division
algebra must be Brauer equivalent (thus isomorphic) to (π,∆)K . In fact, what we will show is that the Brauer
class of any quaternion algebra lies in the cyclic subgroup of Br(K) generated by [(π,∆)K ]. Since this subgroup
is of order 2, the result would then follow.

Let us first compute [(ϵ, δ)K ] for ϵ, δ ∈ Z∗
p. For K non-dyadic, we claim that ⟨ϵ⟩ ⊥ ⟨δ⟩ represents 1. If ϵ = 1,

we are done, so suppose ϵ = ∆. For K non-dyadic, we already know that binary forms over κK are universal,
and so there exists ξ, η ∈ OK such that ∆ξ2 + δη2 ≡ 1 (modπ). By the local square theorem, it follows that
∆ξ2 + δη2 is a square, and hence ⟨∆⟩ ⊥ ⟨δ⟩ represents 1.

Now suppose K = Q2. Since 5(1)2 + δ(2)2 ≡ 1 (mod 8) for any δ ∈ Z∗
2, the local square theorem implies that

⟨5⟩ ⊥ ⟨δ⟩ represents 1. Thus (5, δ)Q2
∼= (1, 2)Q2

. It remains to check the case of (a, b)Q2
for a, b ∈ {3, 7}. By

computing discriminants and Hasse algebras, and appealing to Theorem 3.37, one can check that

⟨−3⟩ ⊥ ⟨−3⟩ ⊥ ⟨9⟩ ∼= ⟨−3⟩ ⊥ ⟨−7⟩ ⊥ ⟨21⟩ ∼= ⟨−7⟩ ⊥ ⟨−7⟩ ⊥ ⟨49⟩ ∼= ⟨−2⟩ ⊥ ⟨−5⟩ ⊥ ⟨10⟩ .

Proposition 3.8 then implies that

(3, 3)Q2
∼= (3, 7)Q2

∼= (7, 7)Q2
∼= (2, 5)Q2 .

Hence, in all cases, we see that any quaternion algebra over Q2 is Brauer equivalent to either (1, 2)Q2 or (5, 2)Q2 .

We now consider quaternion algebras of the form (ϵ, π)K . For K non-dyadic, either ϵ is a square or ∆ times
a square, and we are done. So suppose K = Q2. We just need to check whether (3, 2)Q2 and (7, 2)Q2 are Brauer
equivalent to either (1, 2)Q2 or (5, 2)Q2 . However, note that

[(7, 2)Q2
] = [(15, 2)Q2

] = [(3, 2)Q2
][(5, 2)Q2

]

so that we just need to check whether [(3, 2)Q2
] ∈ {[(1, 2)Q2

], [(5, 2)Q2
]}. However, using Theorem 3.37 and

Proposition 3.8, it can be checked that (3, 2)Q2
∼= (5, 2)Q2

.

Let us now consider the general case, where K may be either dyadic or non-dyadic. Suppose A = (α, β)K .
Write α = ϵπa and β = δπb for a, b ∈ Z and ϵ, δ ∈ O∗

K . By Lemma 3.10, we may suppose without loss of
generality that a, b ∈ {0, 1}. Using Lemma 3.10 again, we see that the Brauer class [A] is a product (in Br(K))
of Brauer classes of the form [(ϵ, δ)K ] or [(ϵ, π)K ] for units ϵ, δ ∈ O∗

K . By the previous special cases, we see that
[A] is in the cyclic subgroup of Br(K) generated by [(π,∆)K ].

Corollary 4.33.1. Assuming the Merkurjev-Suslin theorem, Br(K)[2] ∼= Z/2Z.

4.4 Hilbert Symbols and Hasse Symbols

We maintain the notation set up in the previous section. The results of the previous section motivates the
following definition.

Definition. The Hilbert Norm Residue Symbol [α, β]K for α, β ∈ K∗ is defined to be

[α, β]K :=

{
1 if (α, β)K ∼K (π, 1)K ,

−1 if (α, β)K ∼K (π,∆)K .

Remark 4.34. The above definition holds for any local field of characteristic 0.

As a result of Proposition 3.9, we have the following.

Proposition 4.35. Suppose α, β ∈ K∗. Then [α, β]K = 1 if and only if there exists ξ, η ∈ K such that
αξ2 + βη2 = 1.

Remark 4.36. This proposition gives a very elementary criterion to determine the Brauer class of any quaternion
algebra over K.
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Remark 4.37. In most references, the description of the Hilbert symbol given in the proposition is taken as the
definition of the Hilbert symbol. One then shows the interpretation in terms of quaternion algebras.

One can now rewrite a lot of previous results on quaternion algebras in terms of the Hilbert residue symbol.

Lemma 4.38. Suppose K is a non-archimedean local field

1. [1, α]K = [α,−α]K = [α, 1− α]K = 1 for any α ∈ K∗.

2. [β, α]K = [α, β]K = [αλ2, βµ2]K for any α, β, λ, µ ∈ K∗.

3. [α, β]K [α, γ]K = [α, βγ]K for any α, β, γ ∈ K∗

4. [α, β]K = [α,−αβ]K for α, β ∈ K∗. In particular, [α, α]K = [α,−1]K for α ∈ K∗.

5. If K is non-dyadic, π is a uniformiser of K and ∆ a distinguished unit, then [π,∆]K = −1.

6. If K is non-dyadic, then for any ϵ, δ ∈ O∗
K , we have [ϵ, δ] = 1.

Notice that one can compute any Hilbert norm residue symbol by using just the rules given in the previous
lemma.

Thus, the Hilbert norm residue symbol gives a nice and clean way to compute the Brauer equivalence class
of any central simple K-algebra that happens to be a tensor product of quaternion algebras. In particular, it
gives us a quick way to compute Hasse algebras.

Definition. Suppose V is a regular quadratic space over a local ring K (of characteristic 0). The Hasse Symbol

h(V ) :=

{
1 if SV ∼K (π, 1)K ,

−1 if SV ∼K (π,∆)K .

As before, we can translate properties of the Hasse algebra into properties of the Hasse symbol. For instance,
if V = ⟨α1⟩ ⊥ · · · ⊥ ⟨αn⟩, then

h(V ) =
∏

1≤i≤j≤n

[αi, αj ]K ∈ {±1}.

More generally, if V = U ⊥W then

h(V ) = [discU,discW ]kh(U)h(W ).

We have an interpretation of the Hilbert norm residue symbol in terms of the quadratic reciprocity law from
elementary number theory. Suppose p is an odd prime. Recall the Legendre symbol (ap ) for a ∈ Z prime to p:

we set (ap ) = 1 if a is a square modulo p, and we set (ap ) = −1 otherwise. By the local square theorem, notice
that a is a square modulo p if and only if a ∈ Z∗

p is a perfect square.

Lemma 4.39. Suppose a, b ∈ Z are integers prime to p. Then [a, b]Qp
= 1, and that [a, p]Qp

= (ap ). If a = −1,

we have [−1, p]Qp
= (−1)

1
2 (p−1).

Lemma 4.40. Suppose a, b ∈ Z are odd integers. Then [a, b]Q2 = (−1)
a−1
2 · b−1

2 and [a, 2]Q2 = (−1)
a2−1

8

Exercise 4.41. Prove Lemma 4.39 and Lemma 4.40.

Recall the original quadratic reciprocity law.

Theorem (Quadratic Reciprocity). Suppose p and q are distinct odd primes. Then, we have

(pq )(
q
p ) = (−1)

p−1
2 · q−1

2 , (−1
p ) = (−1)

p−1
2 , and ( 2p ) = (−1)

1
8 (p

2−1).

This law can now be recast in terms of the Hilbert symbols. The formulae for (−1
p ) and ( 2p ) have already

been proven.
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Theorem 4.42 (Quadratic Reciprocity). Suppose p and q are distinct odd primes. Then, we have

[p, q]Qp
[p, q]Qq

= (−1)
p−1
2 · q−1

2 .

4.5 Classifying All Quadratic Spaces over Non-Archimedean Local Fields

Let us now attempt to classify all quadratic spaces over a non-archimedean local field K. Fix a uniformiser π
and a distinguished unit ∆ of K. As usual, OK is the ring of integers of K. First, we study binary spaces.

Lemma 4.43. A regular binary quadratic space V over K represents β ∈ K∗ if and only if

[β,−discV ]K = h(V )[−1,discV ]K .

Proof. Write V = ⟨α1⟩ ⊥ ⟨α2⟩. Then V represents β if and only if ⟨α1/β⟩ ⊥ ⟨α2/β⟩ represents 1. By
Proposition 4.35, this is true if and only if [α1β, α2β]K = 1. Now, a quick computation shows that

[α1β, α2β]K = [α1, α2]K [α1, β]K [α2, β]K [β, β]K = [α1, α2]K [β, α1]K [β, α2]K [β,−1]K = [α1, α2]K [β,−discV ]K .

On the other hand, note that

h(V ) = [α1, α2]K [α1, α1]K [α2, α2]K = [α1, α2]K [α1,−1]K [α2,−1]K = [α1, α2]K [−1,discV ]K .

Thus
h(V )[α1β, α2β]K = [β,−discV ]K [−1,discV ]K ,

and so the result follows.

Corollary 4.43.1. If V is a regular anisotropic binary quadratic space over K and 1 ∈ Q(V ), then Q(V \ {0})
is an index 2 subgroup of K∗.

Proof. As 1 ∈ Q(V ), the lemma says h(V )[−1,discV ]K = 1. We have a group homomorphism K∗ → {±1}, γ 7→
[−discV, γ]K . The lemma then clearly implies that the kernel of this homomorphism is Q(V )∩K∗ = Q(V \{0}).
This map is surjective since discV ̸= −(K∗)2, for otherwise V ∼= ⟨1⟩ ⊥ ⟨−1⟩ is isotropic.

Corollary 4.43.2. If discV = −∆(K∗)2, then Q(V \ {0}) can only be either O∗
K(K∗)2 or πO∗

K(K∗)2.

Proof. If K is non-dyadic, then the corollary follows easily since [π,∆]K = −1 and [ϵ,∆]K = 1 for all ϵ ∈ O∗
K .

Suppose now that K = Q2, by scaling, suppose without loss of generality that 1 ∈ Q(V ). Since any isotropic
regular binary space must be the hyperbolic plane with discriminant −(Q∗

2)
2, it follows that V is anisotropic.

Hence, by the proof of the previous corollary, Q(V \ {0}) is the kernel of the map γ 7→ [5, γ]Q2
. A computation

shows that this kernel is precisely Z∗
2(Q∗

2)
2.

Corollary 4.43.3. If V and W are regular anisotropic binary spaces with QV (V ) ⊆ QW (W ), then V ∼=W .

Proof. By scaling QV and QW appropriately, we may suppose without loss of generality that 1 ∈ Q(V ) ⊆ Q(W ).
By the previous corollary, it follows that QV (V ) = QW (W ). By the lemma (or the proof of the previous
corollary), we thus have [β,−discV ]K = [β,−discW ]K for all β ∈ K∗. It follows that discV discW = (K∗)2,
which implies that discV = discW in K∗/(K∗)2. The lemma then implies that h(V ) = h(W ) as well. By
Theorem 3.37, we thus have V ∼=W .

Lemma 4.44. Suppose K is non-dyadic and V = ⟨ϵ1⟩ ⊥ · · · ⊥ ⟨ϵn⟩ for units ϵ1, ..., ϵn ∈ O∗
K , with n ≥ 3. Then

V is isotropic.

Exercise 4.45. Prove Lemma 4.44.

With these lemmas out of the way, we can now classify anisotropic quaternary regular spaces.
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Proposition 4.46. Let V be any anisotropic regular quaternary quadratic space over K. Then

V ∼= ⟨1⟩ ⊥ ⟨−∆⟩ ⊥ ⟨π⟩ ⊥ ⟨−π∆⟩

where π is a uniformiser of K and ∆ a distinguished unit.

Proof. Write V = U1 ⊥ U2 for regular binary quadratic spaces. As V is anisotropic, U1 and U2 are anisotropic.
If Q(U1\{0}) ⊆ O∗

K(K∗)2, then Q(U1\{0}) = O∗
K(K∗)2 and U1

∼= ⟨1⟩ ⊥ ⟨−∆⟩ by the corollaries of Lemma 4.43.
If Q(U2 \{0})∩O∗

K(K∗)2 ̸= ∅, then −Q(U1 \{0})∩Q(U2 \{0}) ̸= ∅. This would imply that U1 ⊥ U2 is isotropic,
a contradiction. Thus Q(U2 \ {0}) ⊆ K∗ \ O∗

K(K∗)2 = πO∗
K(K∗)2. It follows that U2

∼= ⟨π⟩ ⊥ ⟨−π∆⟩ by the
corollaries of Lemma 4.43, and we are done. Similarly, we are done if Q(U1 \ {0}) ⊆ πO∗

K(K∗)2.

Thus, we may suppose that Q(U1 \ {0}) and Q(U2 \ {0}) are neither contained in O∗
K(K∗)2 nor πO∗

K(K∗)2,
i.e. both U1 and U2 represent (some) units as well as some uniformisers (possibly not π itself). In particular,
we have a decomposition

V ∼= ⟨ϵ1⟩ ⊥ ⟨ϵ2π⟩︸ ︷︷ ︸
U1

⊥ ⟨ϵ3⟩ ⊥ ⟨ϵ4π⟩︸ ︷︷ ︸
U2

for some ϵ1, ϵ2, ϵ3, ϵ4 ∈ O∗
K . In particular, discU1 and discU2 are both uniformisers (times (K∗)2). By

Lemma 4.32, it follows that U1 represents ∆1 for ∆1 ∈ {1,∆} while U2 represents −∆2 for ∆2 ∈ {1,∆}.
we thus have a binary subspace U of V isomorphic to ⟨∆1⟩ ⊥ ⟨−∆2⟩. We cannot have ∆1 = ∆2 since otherwise
U1 ⊥ U2 is isotropic. Thus, ∆1∆2 = ∆, and so discU = −∆. Thus we have found a regular binary subspace U
of V with Q(U \ {0}) either (O∗

K)(K∗)2 or π(O∗
K)(K∗)2, and we are done by the previous argument (where we

use the splitting V = U ⊥ U⊥).

Corollary 4.46.1. Every regular quaternary quadratic space over K is universal.

Proof. We already know that regular isotropic spaces are universal, so we just need to see that a regular
anisotropic quaternary space is universal. By the proposition, it suffices to show that V = ⟨1⟩ ⊥ ⟨−∆⟩ ⊥ ⟨π⟩ ⊥
⟨−π∆⟩ is universal. However, we see that Q(⟨1⟩ ⊥ ⟨−∆⟩) represents {0} ∪ O∗

K(K∗)2 while Q(⟨π⟩ ⊥ ⟨−π∆⟩)
represents {0} ∪ πO∗

K(K∗)2, and hence Q(V ) = K as required.

The significance of the work we have done is to establish the hypothesis on K required by Theorem 3.39.

Corollary 4.46.2. Every regular quadratic space of dimension n ≥ 5 over K is isotropic.

Proof. We can write a regular quadratic space of dimension ≥ 5 as U ⊥ W for W regular quaternary, and
dimK U = n − 4. By the previous corollary, W is universal, and so −Q(U \ {0}) ⊆ Q(W ). Thus U ⊥ W is
isotropic.

Theorem 3.39 is now applicable, and so we immediately get the following classification theorem for free!

Theorem 4.47. Two regular quadratic spaces V and W over a non-archimedean local field are isomorphic if
and only if

dimV = dimW, discV = discW, and h(V ) = h(W ).

Exercise 4.48. Suppose U and V are regular quadratic spaces over a non-archimedean local field, and let
r := dimV − dimU ∈ {0, 1, 2}. Show that there exists an isometry U ↪→ V if and only if

V ∼=


U if r = 0,

U ⊥ ⟨discU · discV ⟩ if r = 1,

U ⊥ H if r = 2.

Here, H is the hyperbolic plane.

The previous theorem says that there are at most 2#
(
K∗/(K∗)2

)
regular quadratic spaces over K of fixed

dimension (2 choices for the Hasse invariant, and #
(
K∗/(K∗)2

)
number of choices for the discriminant). Are

all of these possibilities actually realisable as a quadratic space over K? To answer this question, we need the
following lemma.
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Lemma 4.49. Suppose U and V are regular quadratic spaces over a non-archimedean local field. If dimV −
dimU ≥ 3, there always exists an isometry U ↪→ V .

Proof. We proceed by induction on dimU . For dimU = 0 (so U = {0}) this is trivial, so suppose dimU =:
m ≥ 1. Write U = ⟨α1⟩ ⊥ · · · ⊥ ⟨αm⟩. Then dimV ≥ m + 3 ≥ 4, so V is universal by Corollary 4.46.1. In
particular, αm ∈ Q(V ), so we can write V = ⟨αm⟩ ⊥ V ′ for some V ′. By induction, we can find an isometry

⟨α1⟩ ⊥ · · · ⊥ ⟨αm−1⟩ ↪→ V ′.

Hence U ↪→ V .

Theorem 4.50. Fix n ≥ 3, d ∈ K∗/(K∗)2, and h ∈ {±1}. There exists a regular quadratic space V over K
with invariants dimV = n, discV = d, and h(V ) = h.

For n = 2, there exists a binary regular quadratic space V over K with invariants discV = d and h(V ) = h
if and only if either d ̸= −(K∗)2 or h = [−1,−1]K .

Proof. Necessity follows immediately. Suppose n ≥ 3. Take V ′ = ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩ ⊥ ⟨d⟩. If h(V ′) = h, then we
may take V = V ′ and we are done. So suppose h(V ′) = −h. Write U = ⟨1⟩ ⊥ ⟨π⟩ and U ′ = ⟨∆⟩ ⊥ ⟨π∆⟩. By
Lemma 4.49, there exists a map U ′ ↪→ U ⊥ V ′. Thus, we must have a splitting U ′ ⊥ V ∼= U ⊥ V ′. Computing
invariants, we see that discV = discV ′ = d and h(V ) = −h(V ′) = h as required.

Now suppose n = 2. If h(V ) = [d,−1]K , then we may simply take V = ⟨1⟩ ⊥ ⟨d⟩. In particular, we
have covered the case of d = −(K∗)2 and h = [−1,−1]K . We may thus suppose that d ̸= −(K∗)2 and that
h = −[d,−1]K . There exists α ∈ K∗ such that [α,−d] = −1. Write V = ⟨α⟩ ⊥ ⟨αd⟩. Clearly discV = d. It can
now be checked that h(V ) = −[d,−1]K = h.

Exercise 4.51. Write down a complete list of all isomorphism classes of regular quadratic spaces over Qp for p
a prime. (Hint: For an arbitrary prime p ≡ 1 (mod 4), you will not be able to write down ∆ explicitly. )

5 Quadratic Spaces over Q
In this section, we now study quadratic spaces over Q. It turns out that most of our work is already done, by
the p-adic case!

For those who are interested in quadratic spaces over arbitrary number fields, the last sub-section has a brief
discussion in which all proofs are omitted. Those who are interested should read [OMe73, §64-66].

Throughout, p will denote a prime or ∞, and we set Q∞ := R. We often write ‘p ≤ ∞ is a prime’ to mean
that either p is an honest prime number, or p = ∞. The honest prime numbers are often referred to as the
finite primes, to distinguish it from the ‘infinite prime’ p = ∞.

5.1 Local Invariants

Suppose V is a regular quadratic space over Q. We then have the Qp-vector space Vp := V ⊗Q Qp, and the
quadratic form Q on V extends to a quadratic form on Vp via

Qp : Vp = V ⊗Q Qp → Qp, v ⊗ α 7→ α2Q(v).

In a fixed basis V = Qx1 ⊥ · · · ⊥ Qxn, we clearly have

Vp = Qpx1 ⊥ · · · ⊥ Qpxn.

Obviously dimQp
Vp = dimQ V .

For each finite p, we have the discriminant discVp ∈ Qp/(Q∗
p)

2 and the Hasse invariant h(Vp) ∈ {±1}. We set

discpV := discVp and hp(V ) := h(Vp).

Of course, at the global level, we also have the discriminant discV ∈ Q∗/(Q∗)2 and the Hasse algebra SV . Let
us see how these global invariants are related to the local ones.
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Composing the obvious inclusion map Q∗ ↪→ Q∗
p with the projection Q∗

p → Q∗
p/(Q∗

p)
2, we have the group

homomorphism Q∗ → Q∗
p/(Q∗

p)
2. Clearly (Q∗)2 lies in the kernel of this homomorphism, and hence we get a

map
Q∗/(Q∗)2 → Q∗

p/(Q∗
p)

2.

As Q is dense in Qp, one can check that the above map is surjective. It is easily seen that discpV is the image
of discV under the above map.

To see how the Hasse algebra SV is related to the local invariants, recall that SV ⊗Q Qp
∼= S(Vp), and so the

Brauer class of SV ⊗Q Qp in Br(Qp) is determined by hp(V ). These p-adic Hasse invariants for varying p turn
out to be related to each other. Recall the Hilbert symbols [α, β]Qp

∈ {±1} which describe the isomorphism
Br(Qp) ∼= Z/2Z. Since Q ⊂ Qp for all p, we of course have the Hilbert symbols [a, b]p := [a, b]Qp

∈ {±1} for
a, b ∈ Q over all finite primes p. Since Br(R) ∼= Z/2Z as well, we can also define the Hilbert symbol over R as
before:

[x, y]R =

{
1 if (x, y)R ∼=M2(R),
−1 if (x, y)R ∼= (−1,−1)R.

As before, we have [x, y]R = 1 if and only if there exist z, w ∈ R such that xz2 + yw2 = 1. Hence, [x, y]R = 1 if
and only if one of x or y is positive, and is −1 if and only if both x and y are negative.

We thus have Hilbert symbols [a, b]p for all primes p ≤ ∞ and for all a, b ∈ Q∗.

Theorem 5.1 (Hilbert Reciprocity). Let a, b ∈ Q∗ be arbitrary. Then for almost all primes p, we have
[a, b]p = 1, and we have ∏

p≤∞

[a, b]p = 1.

Remark 5.2. The fact that [a, b]p = 1 for almost all p guarantees that the product
∏

p≤∞[a, b]p = 1 is well-
defined.

Proof. Recall that there are only finitely many primes p such that |ab|p = 1. In particular, for almost all p,
both a and b are p-adic units. By Lemma 4.38(6), we then have [a, b]p = 1 for almost all p ≥ 3. In particular,
the map

Q∗ ×Q∗ → {±1}, (a, b) 7→
∏
p≤∞

[a, b]p

is a well-defined group homomorphism. Since Q∗ is the product of {±1} times the free abelian group generated
by the primes, it suffices to show that

∏
p≤∞[a, b]p = 1 whenever a and b are primes or −1.

Suppose first that a and b are prime numbers. In particular, they are positive. Then [a, b]p = 1 for all primes
p /∈ {a, b} (by Lemma 4.38(6) again), as well as for p = ∞. Thus

∏
p≤∞[a, b]p = [a, b]a[a, b]b[a, b]2. By quadratic

reciprocity, we have [a, b]a[a, b]b = (−1)
a−1
2 · b−1

2 , which by Lemma 4.40 is also [a, b]2.

Now suppose that b = −1. If a is a prime, then
∏

p≤∞[a,−1]p = [a,−1]a[a,−1]2. By Lemma 4.40 and

Lemma 4.39, both [a,−1]a and [a,−1]2 are equal to (−1)
a−1
2 . If a = −1 as well, then

∏
p≤∞[−1,−1]p =

[−1,−1]2 = 1 by Lemma 4.40.

Since hp(V ) is a product of Hilbert symbols, we have the following.

Corollary 5.2.1. For any regular quadratic space V over Q, we have hp(V ) = 1 for almost all primes p, and∏
p≤∞

hp(V ) = 1.

Here, we set

h∞(V ) :=

{
1 if S(V∞) ∼=M2(R),
−1 if S(V∞) ∼= (−1,−1)R.

Remark 5.3. More generally, notice that tensoring with Qp induces a map Br(Q) → Br(Qp) ∼= Q/Z. This map is
called the local invariant map and often denoted by invp : Br(Q) → Q/Z. Hilbert reciprocity then immediately
follows from the following hard theorem of global class field theory.
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Theorem. There is a short exact sequence

0 → Br(Q)

∑
p invp

−−−−−→
⊕
p≤∞

Br(Qp)
∑
−→ Q/Z → 0.

Here, we set Br(R) = (12Z)/Z ⊂ Q/Z.

Now consider p = ∞, i.e. V∞ = V ⊗Q R. We have the two invariants ind+V∞ and ind−V∞, giving the
dimensions of a maximal positive definite and a maximal negative definite subspace of the real space V∞. We
write these two invariants as simply ind+V and ind−V .

Exercise 5.4. Show that h∞(V ) = (−1)
1
2 ind

−V (ind−V−1).

From the above discussion, the following is fairly obvious.

Proposition 5.5. If V andW are regular quadratic spaces that are isomorphic over Q, then dimQ V = dimQW ,
ind+V = ind+W , ind−V = ind−W , and for any finite prime p we have discpV = discpW and hp(V ) = hp(W ).

Remark 5.6. By Corollary 5.2.1, in practice we only need to check that hP (V ) = hp(W ) for only finitely many
primes p.

It turns out that the converse is true as well!

5.2 The Hasse-Minkowski Theorem

In this section, we prove the Hasse-Minkowski Theorem (or, to be more precise, Minkowski’s contribution to
the theorem).

Theorem 5.7 (Hasse-Minkowski for Q). Suppose V and W are regular quadratic spaces over Q. Then V ∼=W
if and only if Vp ∼=Wp for all primes p ≤ ∞.

Corollary 5.7.1. Suppose that V and W are regular quadratic spaces over Q. Then V ∼= W if and only if
dimQ V = dimQW , ind+V = ind+W , ind−V = ind−W , and for any finite prime p we have discpV = discpW
and hp(V ) = hp(W ).

As described in the overview, the Hasse-Minkowski theorem is an example of a local-global principle. A local-
global principle, at least in the case of number theory over characteristic 0, is any result that says that to check
something ‘globally’ (over Q, or over arbitrary number fields), it suffices to check ‘locally’ (i.e. over Qp over all
p, or more generally over all completions of number fields). Of course, local-global principles don’t often hold,
as we shall see with Z later on. Studying local-global principles, or obstructions to local-global principles, is
pretty much what arithmetic geometry is all about.

We prove the Hasse-Minkowski theorem by proving the following (mild) generalisation.

Proposition 5.8. Suppose V and W are regular quadratic spaces over Q with dimQ V ≤ dimQW . Then there
exists an isometry V ↪→W if and only if there exist isometries Vp ↪→Wp for all primes p ≤ ∞.

We will prove Proposition 5.8 by proving the strong Hasse principle. The strong Hasse principle is also a
local global principle. The proof of the strong Hasse principle is actually greatly simplified in the ternary and
quaternary cases if we pass to a quadratic extension of Q and then use non-trivial results from algebraic number
theory (for instance, in the ternary case, we need a result from global class field theory). For convenience, we
give an elementary proof using only results proven (or left as an exercise) above. We first need a technical
lemma.

Lemma 5.9. Let P be a finite set of primes p ≤ ∞. Suppose ∞ ∈ P . For p ∈ P , let tp ∈ Q∗
p be given. Then

there is a t ∈ Q∗ and a prime p0 /∈ P such that

• t ∈ tp(Q∗
p)

2 for all p ∈ P ,

• |t|p = 1 for all p /∈ (P ∪ {p0}).
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Proof. Write ϵ∞ to be the sign of t∞, i.e. ϵ∞ ∈ {±1} such that ϵ∞t∞ ∈ R>0. Write P \ {∞} = {p1, ..., pr}.
For each 1 ≤ i ≤ r, write tpi

= prii si for si ∈ Z∗
pi

and ri ∈ Z. Pick any finite prime p0 not in P satisfying the
congruences

ϵp0
∏

1≤j≤r,j ̸=i

p
rj
j ≡ si (mod peii )

where ei = 1 if pi odd, and ei = 3 if pi = 2. By the Chinese remainder theorem this is equivalent to asking
that p0 /∈ P satisfy a single congruence p0 ≡ a (modm) for gcd(a,m) = 1. Such a prime exists by the following
theorem of Dirichlet.

Theorem. Given any m ∈ N and any a ∈ Z relatively prime to m, there exists infinitely many primes p such
that p ≡ a (modm).

With p0 so defined, set

t = ϵpp0

r∏
i=1

prii ∈ Q.

Clearly t ∈ Z∗
p for all p /∈ P ∪ {p0}. One checks, by our choice of p0 and by the local square theorem, that

t ∈ tp(Q∗
p)

2 for all p ∈ P .

Theorem 5.10 (The Strong Hasse Principle for Q). A regular quadratic space V over Q is isotropic if and
only if Vp is isotropic for all primes p ≤ ∞.

Proof. Necessity is obvious. So suppose V is a regular n-ary quadratic space over Q such that Vp is isotropic
for all primes p ≤ ∞. In particular n ≥ 2. Fix an orthogonal basis x1, ..., xn for V with respect to which we
have

V ∼= ⟨a1⟩ ⊥ · · · ⊥ ⟨an⟩

for integers ai ∈ Q.

First suppose n = 2. Then Vp is the hyperbolic plane for all p ≤ ∞; in particular, we have discpV = −(Q∗
p)

2

for all primes p. Thus −a1a2 is a square in Qp for all finite primes p, and −a1a2 > 0. It follows that −a1a2 is
a square in Q, so that discV = −(Q∗)2. Corollary 1.17.2 then implies that V is isotropic.

Now suppose n = 3. By scaling Q, we may suppose that a1 = 1, so that V ∼= ⟨1⟩ ⊥ ⟨a2⟩ ⊥ ⟨a3⟩, where without
loss of generality a2, a3 are square-free integers. We prove the n = 3 case by induction on m := |a2|+ |a3|. For
m = 2, we have V ∼= ⟨1⟩ ⊥ ⟨±1⟩ ⊥ ⟨±1⟩. Isotropy at R implies that V ̸∼= ⟨1⟩ ⊥ ⟨1⟩ ⊥ ⟨1⟩, and so we see that
V is isotropic over Q. Now suppose m ≥ 3. For any p|a3, we have by isotropy at Vp that −a2 is represented
by ⟨1⟩ ⊥ ⟨a3⟩, so that −a2 is a square modulo p. Thus −a2 is a square modulo

∏
p|a3

p = a3. In particular,

we can find t ∈ Z with |t| ≤ 1
2 |a3| such that t2 = −a2 + a3a

′
3u

2 for some non-zero squarefree a′3 ∈ Z and some
u ∈ Z. The inequality |t| ≤ 1

2 |a3| implies that |a′3| < |a3|. For any prime p ≤ ∞, suppose ξ, η ∈ Qp satisfy
1 + a2ξ

2 + a3η
2 = 0. Then

1 + a2

(
ξt− 1

t+ ξa2

)2

+ a′3

(
uη
t2 + a2
t+ ξa2

)2

= 0,

and so V ′ = ⟨1⟩ ⊥ ⟨a2⟩ ⊥ ⟨a3⟩ is isotropic at all p ≤ ∞. By induction, V ′ is isotropic over Q, and so there exist
x, y ∈ Q such that

1 + a2x
2 + a′3y

2 = 0.

It follows that

1 + a2

(
xt− 1

t+ xa2

)2

+ a3

(
y(t2 + a2)

u(t+ ξa2)

)2

= 0

and hence V is isotropic at Q. The n = 3 is thus established.

Let us now do the n = 4 case. Since Vp is isotropic for all p ≤ ∞, there exists tp ∈ Q∗
p such that tp ∈

Q(Qpx1 ⊥ Qpx2) and −tp ∈ Q(Qpx3 ⊥ Qpx4). Let P ′ be the set of all (finite) primes dividing 2a1a2a3a4, and
let P = {∞} ∪ P ′. By Lemma 5.9, there exists t ∈ Q∗ and a prime p0 such that t ∈ tp(Q∗

p)
2 for all p ∈ P and

|t|p = 1 for all p /∈ P ∪ {p0}. Consider the two ternary spaces over Q

U1 := ⟨a1⟩ ⊥ ⟨a2⟩ ⊥ ⟨−t⟩ U2 := ⟨a3⟩ ⊥ ⟨a4⟩ ⊥ ⟨t⟩ .
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The construction of t implies that U1 and U2 are both isotropic for all p ∈ P . For all primes p /∈ P ∪{p0} (which
are, in particular, odd), we have a1, a2,−t ∈ Z∗

p, and so U1 is isotropic at p by Lemma 4.44. Similarly U2 is
isotropic at p for all such p /∈ P ∪ {p0}. Hence U1 and U2 are isotropic at p for all p ̸= p0 (including the infinite
place). In particular, ⟨a1⟩ ⊥ ⟨a2⟩ over Qp represents t. It follows from Proposition 4.35 that U1 is isotropic at p
if and only if [a1t, a2t]p = 1. Thus we know that [a1t, a2t]p = 1 for all p ̸= p0. However, by Hilbert reciprocity,
we have ∏

p≤∞

[a1t, a2t]p = 1,

which forces [a1t, a2t]p0
= 1 as well. Thus U1 is isotropic at p0 as well. Similarly U2 is isotropic at p0 is isotropic

as well. Hence, the ternary spaces Ui are isotropic at all places of Q, and so by the strong Hasse principle for
n = 3 (proven above), the Ui are isotropic over Q. In particular, Qx1 ⊥ Qx2 represents t and Qx3 ⊥ Qx4
represents −t. It follows that V is isotropic.

We are now left with the case of n ≥ 5. We prove by induction on n for n ≥ 2, where the base cases of
n = 2, 3, 4 is done above. Now suppose n ≥ 5. Set U = Qx1 ⊥ Qx2 and W = Qx3 ⊥ · · · ⊥ Qxn so that
V = U ⊥ W . Then Vp = Up ⊥ Wp for all p ≤ ∞. Let T denote the set of primes p ≤ ∞ such that Wp is
anisotropic. By Lemma 4.44, we have p /∈ T whenever p is a finite prime not dividing 2a1a2 · · · an, and so T is a
finite set. If T is empty, then W is locally isotropic everywhere, and by the inductive hypothesis W is isotropic
over Q, and we are done. So suppose T is non-empty. Pick µp ∈ Q∗

p at each p ∈ T such that µp ∈ Q(Up) and
−µp ∈ Q(Wp); such a µp ∈ Qp exists by isotropy of Vp; we can guarantee µp ̸= 0 since either Up is anisotropic
as well, or Up is isotropic and thus universal. Write µp = Q(ξpx1 + ηpx2) for some ξp, ηp ∈ Qp for all p ∈ T . By
the weak approximation theorem (see Theorem 4.13), we can find ξ, η ∈ Q with ξ close to ξp and η close to ηp
(under |.|p) for each p ∈ T . Set µ = Q(ξx1 + ηx2). By making |ξ − ξp|p and |η − ηp|p small enough, we may
make µ arbitrarily close to µp for all p ∈ T . Thus we can make |µµ−1

p − 1|p < ϵ for all p ∈ T , for any arbitrary
ϵ > 0.

However, one can check that (Q∗
p)

2 is an open subset of Qp, and so by making ϵ small enough we can guarantee
µ ∈ µp(Q∗

p)
2. Thus −µ ∈ Q(Wp) for all p ∈ T . We already have −µ ∈ Q(Wp) for p /∈ T by isotropy of Wp at p.

Hence, the n− 1-dimensional subspace V ′ := ⟨ξx1 + ηx2⟩ ⊥ W of V is isotropic over Qp for all primes p ≤ ∞.
The induction hypothesis then implies that V ′ is isotropic over Q, and so V is isotropic over Q.

Proof of Proposition 5.8. First suppose dimV = 1, say V = ⟨α⟩. Then α is represented by W for all p, and
so ⟨−α⟩ ⊥ W is isotropic at all p. By the strong Hasse principle, ⟨−α⟩ ⊥ W is isotropic over Q, and so W
represents α over Q. We thus have an isometry V = ⟨α⟩ ↪→W . We now proceed by induction on dimV .

Pick any anisotropic x ∈ V . We have isometries Qpx ↪→ Vp ↪→ Wp for all primes p ≤ ∞, and so by the
1-dimensional case we have an isometry Qx ↪→ W . Since x is anisotropic, we have splittings V = ⟨x⟩ ⊥ V ′

and W = ⟨x⟩ ⊥ W ′. For each prime p ≤ ∞, using Witt’s extension theorem, we get isometries V ′
p ↪→ W ′

p.
The inductive hypothesis implies that there is an isometry V ′ ↪→ W ′ over Q. Hence we have an isometry
V ↪→W .

Exercise 5.11. Show that the spaces ⟨1⟩ ⊥ ⟨1⟩ ⊥ ⟨1⟩ ⊥ ⟨1⟩ and ⟨b⟩ ⊥ ⟨b⟩ ⊥ ⟨b⟩ ⊥ ⟨b⟩ are isomorphic over Q for
all b ∈ Q∗.

Exercise 5.12. Consider the three quadratic forms

f = x21 + x22 + 16x23 − x24, g = 3x21 + 7x22 − 4x3x4, and h = 2x21 + 2x22 + 5x23 − 16x24 − 2x2x3 − 2x1x3.

Which of these forms are isotropic over Q? Are any of these isomorphic to each other?

Exercise 5.13. Suppose V and W are regular quadratic spaces over Q with V∞ ∼= W∞. Suppose that there
exists a finite prime p0 such that Vp ∼=Wp for all primes p ̸= p0. Show that V ∼=W .

5.3 Prescribing Local Behaviour

As in the case of local fields, now that we have a set of invariants for a quadratic space that determine it up
to isomorphism, one can of course ask whether such a quadratic space exists for a prescribed set of invariants.
This is the content of the following.
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Theorem 5.14. Let n ≥ 1. Suppose, for each prime p ≤ ∞, we are given a regular n-ary quadratic space Up

over Qp. Then, there exists a regular n-ary quadratic space V over Q such that Vp ∼= Up for all primes p ≤ ∞
if and only if

1. there exists d0 ∈ Q∗ such that discUp = d0(Q∗
p)

2 for all p,

2. h(Up) = 1 for almost all p, and

3.
∏

p≤∞ h(Up) = 1, where we define h(U∞) as the image of S(U∞) under Br(R) ∼= Z/2Z.

This V is necessarily unique (by Hasse-Minkowski).

Proof. Necessity is clear from what has been discussed before. We proceed by induction on n. If n = 1, we
may simply take V = ⟨d0⟩. So suppose n ≥ 2. So suppose we are given Up satisfying the above constraints. Let
P = {∞, 2} ∪ P ′ where P ′ is the set of all odd finite primes p such that either |d0|p ̸= 1 or h(Up) = −1. This is
a finite set by condition (2) and the fact that d0 ∈ Q. For each p ∈ P fix tp ∈ Q∗

p such that tp ∈ QUp
(Up).

Suppose first that n = 2. Lemma 5.9 guarantees the existence of t ∈ Q∗ and a prime p0 /∈ P such that
t ∈ tp(Q∗

p)
2 for all p ∈ P and |t|p = 1 for p /∈ P ∪{p0}. Set V = ⟨t⟩ ⊥ ⟨d0t⟩. We clearly have discpV = d0(Q∗

p)
2 =

discUp for all p ≤ ∞. Notice that hp(V ) = [t, t]p[t, d0t
2]p = [t,−1]p[t, d0]p = [t,−d0]p. A computation checks

that hp(V ) = h(Up) for all p ∈ P . For p /∈ P ∪ {∞}, one easily checks that hp(V ) = 1 = h(Up). Hilbert
reciprocity then forces hp0(V ) = h(Up0). Hence Vp ∼= Up by Theorem 4.47.

Now suppose n ≥ 3. As a result of the weak approximation theorem and the fact that (Q∗
p)

2 is open in Q∗
p,

we can find t ∈ Q∗ such that t ∈ tp(Q∗
p)

2 for all p ∈ P . We thus have t ∈ QUp(Up) for all p ∈ P . For all p /∈ P ,
we have |d0|p = 1 and h(Up) = 1. Theorem 4.47 implies that Up

∼= ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩ ⊥ ⟨d0⟩, and so Lemma 4.44
implies that Up is isotropic. In particular, it is universal, and so t ∈ Q(Up) for all p /∈ P . Hence, for all primes
p ≤ ∞, we have Up

∼= ⟨t⟩ ⊥ U ′
p for some n− 1 dimensional regular quadratic space U ′

p over Qp.

Notice that for all p, discU ′
p = (d0t)(Q∗

p)
2 where d0t ∈ Q. Next, we have h(Up) = [t, d0t]ph(U

′
p). In particular,

for almost all odd p, we have [t, d0t]p = 1 as t and d0 are p-adic primes. We also have h(Up) = 1 for almost
all p. Hence h(U ′

p) = 1 for almost all p. Hilbert reciprocity (and its corollary) then implies that
∏

p h(U
′
p) = 1.

Thus, the U ′
p satisfy the conditions of the theorem, and so by the induction hypothesis there exists V ′ over Q

such that V ′
p
∼= U ′

p. We may then take V = ⟨t⟩ ⊥ V ′.

Combining the above theorem with what we know about quadratic spaces over local fields, we have the
following.

Corollary 5.14.1. Let n ≥ 2 and 0 ≤ q ≤ n be given integers. For each finite prime p, suppose we are given
dp ∈ (Q∗

p)/(Q∗
p)

2 and hp ∈ {±1}. Then, there exists a unique regular n-ary quadratic space V over Q satisfying

ind+V = q, hp(V ) = hp ∀ p and discpV = dp ∀ p

if and only if the following conditions hold:

1. for each (finite) prime p, either n ≥ 3, or dp ̸= −(Q∗
p)

2, or hp = [−1,−1]Qp
;

2. there exists d ∈ Q∗ such that dp = d(Q∗
p)

2 for all finite primes p, and (−1)n−qd ∈ R>0;

3. hp = 1 for almost all p; and

4.
∏

p hp = (−1)
1
2 (n−q)(n−q−1) (the product beign over all finite primes p).

5.4 Quadratic Spaces over General Number Fields

Remark 5.15. This section is for those who are interested in the theory of quadratic spaces over number fields.
In particular, I will be assuming some basic knowledge of algebraic number theory. This section was not covered
in class, and may be safely skipped.

Let K be a number field. Each finite place v of K corresponds to a prime ideal p of OK , while each infinite
place corresponds to either a real embedding K ↪→ Kv = R, or a complex embedding K ↪→ Kv = C. Given a
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regular n-ary quadratic space V over K, we can assign the local invariants

hp(V ) = h(V ⊗K Kp) and discpV = disc(V ⊗K Kp)

at primes p of OK , and for the real places v we have

inv+v V := inv+(V ⊗K R) and inv−v V := inv−(V ⊗K R).

We also have the Hilbert symbols [a, b]p := [a, b]Kp
associated to each p.

5.4.1 Hilbert Reciprocity

We still still have Hilbert reciprocity.

Theorem. For almost all p, we have [a, b]p = 1. Also,( ∏
v real

[a, b]R

)
·

(∏
p

[a, b]p

)
= 1.

Unlike over Q, the proof of Hilbert reciprocity for general K requires class field theory. It is a direct corollary
of the short exact sequence

0 → Br(K)
∑

v invv−−−−−→
⊕
v

Br(Kv)
∑
−→ Q/Z → 0

where

Br(Kv) =


Q/Z if v finite,

( 12Z)/Z if v real,

{1} if v complex.

Exactness on the right is trivial, exactness in the middle is a result of class field theory, and exactness on the
left is the Albert–Brauer–Hasse–Noether theorem.

However, we can also reformulate Hilbert reciprocity in terms of classical class field theory. We recall some
of the statements.

1. (Kummer Theory) Let n ≥ 2. Suppose K is a number field containing all n’th roots of unity. Let ∆ be a

subgroup of K∗/(K∗)n, and write ∆
1
n := { n

√
a : a ∈ K, a(K∗)n ∈ ∆}. Set L = K(∆

1
n ). Then L is a finite

extension, and there is a natural bijection

∆ ∼= Hom(Gal(L/K),C) = Hom(Gal(L/K), µn(C)), b(K∗)n 7→ χb

where µn(C) is the group of n’th roots of unity in C.

2. (Local Class Field Theory - Artin Reciprocity) Suppose L/K is a finite abelian extension of non-archimedean
local fields, and let NL/K : L → K be the field norm. Then, there exists a canonical isomorphism (the
local Artin reciprocity map)

ArtL/K : K∗/NL/K(L∗)
∼−→ Gal(L/K).

Write ArtL/K(a) := ArtL/K

(
a · NL/K(L∗)

)
. It turns out that the local Artin reciprocity map sends all

uniformisers to the Frobenius map in Gal(L/K), while ArtL/K maps any unit to the identity.

3. (A part of Artin’s Global Reciprocity Law) Suppose K is a global field, and L a finite (Galois) abelian
extension of K. For each valuation v of K, fix a valuation w of L above v. If v is non-archimedean, we
already have a map

ArtLw/Kv
: K∗

v → Gal(Lw,Kv) ⊂ Gal(L/K).

For v real and w complex, we define a map

ArtLw/Kv
: K∗

v → Z/2Z = Gal(Lw,Kv) ⊂ Gal(L/K)

that takes positive reals to the identity and negative reals to complex conjugation. In all other cases, we
have Lw = Kv and we define ArtLw/Kv

to be the trivial map.
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In this set up, it turns out that for any a ∈ K∗, we have ArtLw/Kv
(a) is the identity in Gal(L/K) for

almost all v. Moreover, we have the following product in Gal(L/K):∏
v

ArtLw/Kv
(a) = 1.

Now suppose K is a global field and p is a prime. In the notation of statement (1), take ∆ = K∗
p/(K

∗
p)

n itself

and set L = Kp(∆
1/n). It turns out that NL/K(L∗) = (K∗)n. Set

[α, β]
(n)
Kp

:= χβ

(
ArtL/K(α)

)
∈ µn.

These are the n’th order Hilbert Symbols on Kp. It turns out that the second order Hilbert symbol corresponds
precisely to the Hilbert symbol defined previously in the context of quaternions. Hilbert reciprocity immediately
follows from statements (2) and (3) above.

5.4.2 Hasse-Minkowski

We still have the Hasse-Minkowski theorem.

Theorem. Suppose V and W are regular quadratic spaces over the number field K. Then V ∼= W over K if
and only if V ⊗K Kv

∼=W ⊗K Kv over Kv for all places v of K.

Remark 5.16. Minkowski only proved the case K = Q, and Hasse generalised to arbitrary number fields.

The proof of the Hasse-Minkowski theorem for general number fields follows that of Q. Indeed, one first
proves the following.

Theorem (Strong Hasse Principle). Suppose V is a regular quadratic space over a number field K. Then V is
isotropic over K if and only if V ⊗K Kv is isotropic over Kv for all places v of K.

The proof of the strong Hasse principle over number fields mostly follows as in the case of Q, except in the
ternary and quaternary cases. In these two cases, one needs to argue slightly differently (see [OMe73, Theorem
66:1]). For instance, in the ternary case, one replaces the use of Dirichlet’s theorem on primes in arithmetic
progression with some basic results from class field theory. Once the strong Hasse principle is established, the
Hasse-Minkowski theorem follows in exactly the same way as in the case of Q.

We can also prescribe local behaviour as before. The theorem carries over mutatis mutandis.

Theorem. Let n ≥ 1 and K a number field. Suppose, for each place v of K, we are given a regular n-ary
quadratic space Uv over Kv. Then, there exists a regular n-ary quadratic space V over K such that V ⊗KKv

∼= Uv

for all places v of K if and only if

1. there exists d0 ∈ K∗ such that discUv = d0(K
∗
v )

2 for all places v,

2. h(Uv) = 1 for almost all places v, and

3.
∏

v h(Uv) = 1.

This V is necessarily unique (by Hasse-Minkowski).

The proof for general number fields is again slightly different. As before, instead of Dirichlet’s theorem on
primes in arithmetic progression, one uses some facts from class field theory (see [OMe73, §72]).

6 Lattices over Principal Ideal Domains

We now consider the study of quadratic forms over rings, not fields. The simple fact that distinguishes the
theory of quadratic forms over rings from over fields is that one can always divide by non-zero elements in a
field. In general rings, this does not hold, which complicates the theory significantly. However, we stick to
integral domains; by embedding into the fraction field, we can then use results that we have proven over fields
to obtain results over rings.
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In this section, we will mostly be concerned with quadratic forms over PIDs. The general theory of lattices
does extend to arbitrary Dedekind domains. Recall that Dedekind domains are integral domains in which every
non-zero proper ideal factors uniquely as a product of prime ideals. The main example of Dedekind domains
are the rings of integers OK for K a number field. PIDs are also Dedekind domains. See [OMe73, Chapter
VIII] for details on the general theory of lattices over Dedekind domains.

Throughout this section, let R be a PID with fraction field K.

6.1 Necessary Results About PIDs

Before introducing the theory of lattices over PIDs, let us recall some basic definitions and facts about PIDs
that we will need. For proofs, see pretty much any book on abstract ring theory.

Definition. A PID (or principal ideal domain) is an integral domain R in which every ideal of R is principal
(i.e. generated by a single element).

Examples include all local rings, Z, k[x] for k a field, etc.

Definition. A prime element π ∈ R is an element of R such that π|αβ implies that π|α or π|β.

Lemma 6.1. Every prime element π is irreducible, i.e. if π = αβ for α, β ∈ R, then one of α or β is a unit
in R.

Proposition 6.2. Every PID is a UFD. In other words, for any α ∈ R \ {0}, there exist prime elements
π1, ..., πr (unique up to permutation and multiplication by units) such that α = π1 · · ·πr.

Corollary 6.2.1. For any α ∈ K∗, there exist distinct prime elements π1, ..., πr in R and integers a1, ..., ar ∈
Z \ {0} such that α = ϵπa1

1 · · ·πar
r for some ϵ ∈ R∗. Moreover, the πi are unique up to multiplication by units

and up to reordering, the ai are unique, and r is unique.

Definition. A fractional ideal of R is an R-submodule a ⊂ K such that αa is an honest ideal of R for some
α ∈ R (possibly equal to R itself).

In particular, both {0} and R are fractional ideals of R. Also, every ideal of R is a fractional ideal. Since by
definition every ideal of R is principal, the previous corollary implies the following.

Lemma 6.3. Every fractional ideal in a PID R is of the form αR for some α in the fraction field of R. This
α is unique up to multiplication by a unit.

We will also need the following structure theorem for finitely generated modules over PIDs.

Theorem 6.4 (Structure Theorem of Finitely Generated Modules over PIDs). SupposeM is a finitely generated
module over a PID R.

• There is a direct sum decomposition
M ∼= Rn ⊕M tor

into a free module Rn for a unique n ≥ 0 and the submodule

M tor := {m ∈M : am = 0 for some a ∈ R \ {0}}

consisting of all torsion elements of M . This n ≥ 0 is called the rank of M , and

• Every R-submodule of M is also a finitely generated R-module.

6.2 Abstract Lattices

Suppose V is any vector space over K, i.e. we do take any quadratic space structure on V .

Definition. A lattice (over R) is an R-submodule L of V such that there exists a K-basis x1, ..., xn of V
satisfying L = Rx1 +Rx2 + · · ·+Rxk for some 1 ≤ k ≤ n. The lattice is said to be full if L spans V . The basis
x1, ..., xn of V above is said to be adapted to L.
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In particular, {0} is a lattice. Clearly, the rank of a lattice satisfies

rankL = k = dimK KL

where k is as in the definition above. Notice that any lattice L is always a full lattice in the subspace KL of V .
Given any α ∈ K, we define αL := {αx : x ∈ L}. Clearly αL is a lattice if L is a lattice.

The structure theorem (Theorem 6.4) gives us the following characterisation of lattices.

Proposition 6.5. Suppose M is a R-submodule of V . The following are equivalent.

1. M is finitely generated over R.

2. M is a lattice.

3. For any given full lattice L, there exists a non-zero α ∈ R such that αM ⊆ L.

4. M ⊆ Rx1 + · · ·+Rxn for some basis x1, ..., xn of V .

Proof. (4) =⇒ (1) follows immediately from the structure theorem, noting that Rx1 + · · ·+ Rxn is a finitely
generated R module. (3) =⇒ (4) follows by simply taking L := Rx1 + · · ·+Rxn for any basis of V , and then
replacing xi with

1
αxi.

We now show (1) =⇒ (2). Since V is obviously torsion free over R, so is M . The structure theorem then
implies that M is free, i.e. M = Rx1 + · · · + Rxm for some x1, ..., xm ∈ M ⊂ V that are linearly independent
over R. If any non-trivial K-linear combination of x1, ..., xm is zero, then by clearing denominators we would get
a non-trivial R-linear combination of x1, ..., xm equalling 0. It follows that x1, ..., xm are linearly independent
over K. Hence M is a lattice.

It remains to show (2) =⇒ (3). Write L = Rx1 + · · · + Rxn and M = Ry1 + · · · + Rym. Each yi can be
written as xi =

∑
j aijxj . There exists α ∈ R such that αaij ∈ R for all i, j (we are just clearing denominators).

Hence αyi ∈ L for all i, and thus αM ⊆ L.

Corollary 6.5.1. Suppose U is a subspace of V , and L is an R-submodule of U . Then, L is a lattice in U if
and only if L is a lattice in V .

This corollary in particular allows us to often assume lattices are full without loss of generality.

Corollary 6.5.2. L ∩M is a lattice in V whenever L and M are lattices in V .

We define
M +N := {m+ n : m ∈M,n ∈ N} ⊆ V.

Corollary 6.5.3. L + M is a lattice in V whenever L and M are lattices in V . Moreover, L + M is full
whenever at least one of L or M is full.

Exercise 6.6. Prove Corollary 6.5.1, Corollary 6.5.2, and Corollary 6.5.3.

The following identities are clear:

α(M ∩N) = (αM) ∩ (αN), (α+ β)M = αM + βN, and α(M +N) = αM + αN.

Now suppose L is a lattice, and x ∈ KL is non-zero. Then L ∩ Kx is a rank 1 lattice in KL, and so
L ∩ KL = Ry for some y ∈ L ∩ Kx. Writing y = αx for α ∈ K, we have L ∩ Kx = αRx. Thus, given any
x ∈ KL we can find a fractional ideal a of R such that a · x = L ∩Kx.

Definition. Suppose x ∈ KL is non-zero. Then, α ∈ K∗ is a coefficient of x in L if R(αx) = L ∩Kx.

Lemma 6.7. Suppose x ∈ KL \ {0} for L a lattice. Consider the set

cx := {β ∈ K : βx ∈ L}.
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Then cx is a fractional ideal, and cx = αR if and only if α is a coefficient of x in L. In particular, x ∈ L if and
only if R ⊆ cx.

In particular, it follows that the coefficient of x in L is uniquely defined up to multiplication by a unit of R.

Exercise 6.8. Prove Lemma 6.7.

Definition. The ideal cx given in Lemma 6.7 is called the coefficient ideal of x in L. We denote the coefficient
ideal by cLx (or cx if the lattice is known).

Note that the coefficient ideal of x in L is a fractional ideal.

Exercise 6.9. Show that α(cαx) = cx.

Lemma 6.10. Suppose L = Rx1 + · · · + Rxn is a full lattice of V . Let x ∈ V \ {0} be arbitrary, and write
x = α1x1 + · · ·+ αnxn. Then,

cx =
⋂

1≤i≤n,αi ̸=0

(α−1
i R).

Exercise 6.11. Prove Lemma 6.10.

Definition. Suppose L is a lattice. A vector x ∈ KL is a maximal vector of L if the coefficient of x in L is a
unit. In other words, x is a maximal vector of L if αx ∈ L holds if and only if α ∈ R.

Thus, all basis vectors of a lattice are maximal vectors.

Exercise 6.12. Suppose x ∈ V is a maximal vector of a lattice L. Show there exists a basis x1, ..., xn of V
adapted to L such that x1 = x.

Exercise 6.13. Suppose x1, ..., xn is a basis for V , and let L be a full lattice. Then, x1, ..., xn is a basis for L if
and only if xi is a maximal vector of L for all 1 ≤ i ≤ n.

Proposition 6.14. Suppose the PID R has the property that R/π is a finite field for all prime elements π of
R. Then, between any two lattices M ⊆ L of the same rank, there exist only finitely many lattices N such that
M ⊆ N ⊆ L.

Remark 6.15. This assumption on R holds for R = Zp and for R = Z, which are the cases we are most interested
in.

Proof. Without loss of generality we suppose L and M are full. Then L/M is a finitely generated R-module.
Suppose x +M ∈ L/M . By Proposition 6.5, there exists α ∈ R \ {0} such that αL ⊆ M , and so α(x +M) =
M ∈ L/M . Thus x+M is a torsion element. Hence, L/M is a torsion module, and so by the structure theorem,
we can write

L/M ∼= (R/γ1)× · · · (R/γr)

for unique r and unique γi ∈ R \{0} such that γi+1|γi for 1 ≤ i ≤ r. By the assumption on R, and the fact that
each γi has a unique factorization into finitely many primes, it follows that each of R/γi are finite sets. Thus
L/M is a finite R-module. Hence, there can only be finitely many lattices N such that M ⊆ N ⊆ L.

6.3 Quadratic Lattices

6.3.1 Classes

Now suppose L is a regular lattice. If σ ∈ O(V ), then σ(L) is also a (regular) lattice. Clearly, Q(σL) = Q(L),
so that the elements of R represented by L is the same as those represented by σ(L). We thus want to identify
σ(L) and L as belonging to the same equivalence class, and we thus want to classify the equivalence classes of
lattices in V . This leads to the following definition.

Definition. The class of a lattice L, denoted cls(L), is the set of all full lattices K in V such that σ(K) = L
for some σ ∈ O(V ). The proper class of a lattice, denoted cls+(L), is the subset of cls(L) consisting of those
full lattices K such that σ(K) = L for σ ∈ SO(V ).
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Definition. The group of automorphisms of a lattice O(L) is the subset of O(V ) consisting of those σ ∈ O(V )
such that σ(L) = L. We denote by SO(L) the subgroup SO(L) := O(L) ∩ SO(V ).

Clearly O(L) and O(K) are isomorphic as groups whenever K and L are in the same class; indeed, O(σL) =
σO(L)σ−1. Notice also that SO(L) need not be a proper subgroup of O(L); indeed, it is possible for SO(L) =
O(L) in some cases.

Lemma 6.16. Suppose L is a full lattice on V . Then clsL = cls+L if and only if SO(L) is a proper subgroup
of O(L) (necessarily a normal index 2 subgroup).

Proof. We already have cls+L ⊆ clsL. So suppose K ∈ clsL, and write K = σL for σ ∈ O(V ). If σ ∈ SO(V ),
we are done, so suppose detσ = −1. Since SO(L) is a proper subgroup, there exists a τ ∈ O(L) such that
det(τ) = −1. Then στ(L) = σ(L) = K, and det(στ) = 1. Hence K ∈ cls+(L).

Exercise 6.17. Show that there exists a natural bijection between clsL and O(V )/O(L), such that under this
bijection the subset cls+L is in bijection with SO(V )/SO(L) ↪→ O(V )/O(L).

Exercise 6.18. If dimV is odd, show that clsL = cls+L.

6.3.2 Orthogonal Splittings

Recall that, given lattices L1, ..., Lr in V , we can form the lattice L = L1 + · · · + Lr. We say that this sum is
direct, written L = L1 ⊕+ · · · ⊕ Lr, if every element in L can be expressed uniquely as a sum x1 + · · ·+ xr for
xi ∈ Li (this is just the definition of a direct sum of R-modules).

Definition. Suppose L = L1 ⊕ · · · ⊕ Lr, and suppose that B(xi, xj) = 0 for all xi ∈ Li and xj ∈ Lj , for all
i ̸= j. Then we write L = L1 ⊥ · · · ⊥ Lr, and say that L has an orthogonal splitting into the components
L1, ..., Lr. We say that the Li split L.

Clearly,
K(L1 ⊥ · · · ⊥ Lr) = KL1 ⊥ · · · ⊥ KLr.

Notice that if V and W are regular quadratic spaces containing lattices L and M respectively, then L ⊥ M
makes sense as a lattice in V ⊥W . We thus sometimes abuse notation by writing L = L1 ⊥ L2 for any arbitrary
lattices L1 and L2 (even if they do not live in the same quadratic space), by considering L,L1, L2 as lattices in
KL = KL1 ⊥ KL2.

If L is a full lattice in V , and suppose V has a basis x1, ..., xn, we can form the matrix A = (B(xi, xj))i,j as
before. We have V = ⟨A⟩. We will write L = ⟨A⟩ to denote that L = Rx1 + · · · + Rxn. In particular, we can
consider a rank 1 lattice ⟨α⟩ = Rx where x satisfies Q(x) = 0. We say that x1, ..., xn is an orthogonal basis for
L if

L = Rx1 ⊥ · · · ⊥ Rxn.

Unlike in the case of a quadratic space, not all lattices have an orthogonal basis!

Finally, a comment on regularity.

Definition. A lattice L is regular if KL is a regular quadratic space.

Throughout, we will assume that L is regular. The following exercise shows that this assumption is harmless
(see also Exercise 1.16).

Exercise 6.19. For any lattice L in any quadratic space V , set

rad(L) = {x ∈ L,B(x, v) = 0 ∀ v ∈ L}.

Recall also the subspace rad(V ) from Exercise 1.16.

1. Show that rad(L) is a lattice in V .

2. Show that rad(KL) = Krad(L) and that radL = L ∩ rad(KL).

3. Show that L is a regular lattice if and only if rad(L) = {0}.
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4. Show rad(L ⊥M) = rad(L) ⊥ rad(M).

5. Given any lattice L in V , show that there exists a regular lattice M in V such that L =M ⊥ rad(L).

6.4 Invariants of Lattices

We now construct various invariants of a lattice.

Consider the following lemma.

Lemma 6.20. Suppose L = Rx1 + · · · + Rxk is a lattice in V . Consider any y1, ..., yk ∈ KL. Then y1, ..., yk
is a basis for L if and only if we have yi =

∑
j aijxj where (aij) ∈ GLk(R) (importantly, det(aij) ∈ R∗).

Proof. Since yi ∈ KL, we can write yi =
∑

j aijxj for aij ∈ K. Notice that y1, ..., yk is a basis for L if and only
if all the aij ∈ R and if there exists bij ∈ R such that xi =

∑
j bijyj . In particular, it follows that y1, ..., yk

is a basis for L if (aij) ∈ GLk(R) since we may take bij = (aij)
−1. On the other hand, if we can find such

a (bij) ∈ Mk(R), then we have xi =
∑

j (
∑

h bihahj)xj . Linear independence implies that (aij)(bij) = Ik in
Mk(R), and so (aij) ∈ GLk(R).

Thus, we see that the matrices X = (B(xi, xj))i,j and Y = (B(yi, yj))i,j satisfy Y = AtXA where A =
(aij)i,j ∈ GLk(R) is in the lemma above. Thus detY = u2 detX for some u ∈ R∗. Since we are assuming our
spaces to be regular, we also know that detX ̸= 0. This motivates the following definition.

Definition. The discriminant of a full regular lattice L in V , written discL, is the class (detX)(R∗)2 ∈
K∗/(R∗)2. For any regular lattice L in V , by considering L as a sublattice of KL, we can thus define discL.

Since R∗ ⊂ K∗, note that (discL)(K∗)2 = disc(KL). We also clearly have disc(αL) = α2rdiscL where
r = rankL.

Also, since discL can be considered as an element of K∗ up to multiplication by (the square of) a unit, it
follows that the fractional ideal (discL)R is well-defined. This fractional ideal is sometimes referred to as the
volume of L.

Lemma 6.21. Suppose L and M are regular lattices of the same rank with M ⊆ L. Then (discM) · R ⊂
(discL) ·R, i.e. discM/discL ∈ R/(R∗)2. Moreover, discM/discL ∈ R∗/(R∗)2 if and only if L =M .

Proof. Without loss of generality, suppose L andM are full. Write L = Rx1+ · · ·+Rxn. Set X = (B(xi, xj))i,j
(so L = ⟨X⟩). Write M = Ry1 + · · ·+Ryn; then there exists C ∈Mn(R) with entries in R such that

(y1, ..., yn) = (x1, ..., xn)C.

Set Y = (B(yi, yj))i,j ∈ Mn(K). A computation shows that Y = CtXC. Hence detY = (detC)2 detX with
detC ∈ R. The first result follows. The second statement follows from the fact that detC ∈ R∗ if and only if
C ∈ GLn(R).

Since disc(σL) = discL, we have the following corollary.

Corollary 6.21.1. Suppose L is a full regular lattice. If σ ∈ O(V ) satisfies σL ⊆ L, then σL = L and so
σ ∈ O(L).

Related to the discriminant are the following two invariants.

Definition. The scale of a regular lattice L, written sL, is the fractional ideal of R generated by B(x, y) for
x, y ∈ L. The norm of a lattice L, written nL, is the fractional ideal of R generated by Q(L).

Again, by regularity of KL we see that sL and nL are non-zero fractional ideals of R, i.e. sL = s(L) ·R and
nL = n(L) · R for some s(L), n(L) ∈ K∗. Moreover, these elements s(L) and n(L) of K∗ are well-defined only
up to R∗.
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If L = Rx1 + · · ·+Rxr, notice that

sL =
∑

1≤i≤j≤r

B(xi, xj) ·R and nL = Q(x1)R+ · · ·+Q(xr)R+ 2sL

as fractional ideals of R. In particular, 2sL ⊆ nL ⊆ sL.

The following properties of the discriminant, scale, and norm of a lattice follow from the definitions, and are
left as exercises.

Lemma 6.22. Suppose V and W are regular quadratic spaces. Let L be a full lattice in V , M a full lattice in
W , and write N = L+M for the corresponding full lattice in V ⊥W . Then,

sN = sL+ sM and nN = nL+ nM.

Lemma 6.23. s(αL) = α2(sL) and n(αL) = α2(nL).

Lemma 6.24. Let M be a non-zero lattice in the regular quadratic space V . Then, there exists a full lattice L
on V split by M (i.e. L =M ⊥ J for some lattice J in V ) with the same scale and norm as M .

Lemma 6.25. Suppose L is a lattice of rank r. Then, discL ⊂ (sL)r (viewing discL as a coset in K∗/(R∗)2).
In other words, (discL)s(L)−r ∈ R/R∗.

Exercise 6.26. Prove Lemma 6.23, Lemma 6.24, and Lemma 6.25.

6.5 Modular Lattices

Suppose L is a regular lattice of rank r. Write discL = α(R∗)2. We know that α ∈ (sL)r.

Definition. Suppose α ∈ K∗. A regular lattice L is α-modular if (discL)R = αR and (sL)r = αR (so that
s(L) = αR∗). A lattice is unimodular if it is 1-modular.

Clearly βL is β2α-modular whenever L is α-modular. The lattice Rx with x ∈ V anisotropic is always
Q(x)-modular.

Lemma 6.27. Write L = ⟨X⟩ for X ∈Mr(K). Then L is unimodular if and only if X ∈ GLr(R).

Exercise 6.28. Prove Lemma 6.27.

Given a lattice L, consider
L# := {x ∈ KL : B(x, y) ∈ R ∀ y ∈ L}.

This is the dual lattice. One can check easily that if L = Rx1+· · ·+Rxr and yi ∈ KL is such that B(yi, xj) = δij
(the Kronecker delta), then

L# = Ry1 + · · ·+Ryn.

Hence L# is an honest lattice. One can compute that K(L#) = KL, (L#)# = L, (αL)# = α−1L# for any
α ∈ K∗, and (L ⊥ M)# = L# ⊥ M#. A simple computation shows that discL# = (discL)−1, i.e. if we write
discL = α(R∗)2 for α ∈ K∗, then discL# = α−1(R∗)2.

Proposition 6.29. Suppose L is a non-zero regular lattice. The following are equivalent.

1. L is α-modular.

2. αL# = L.

3. B(x, L) = αR for every maximal vector x in L.

Proof. Suppose L is α-modular. Then B(L,α−1L) ⊆ R so that, by definition, α−1L ⊆ L#. On the other hand,
since discL = αr(R∗)2 we have

disc(α−1L) = α−2rdiscL = α−r(R∗)2 = (discL)−1 = discL#.
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By Lemma 6.21, it follows that α−1L = L#. Hence (1) =⇒ (2). On the other hand, if (2) holds, so that
B(L,L) = B(L,αL#) ⊆ αR and thus sL ⊆ αR. Further, we have

discL = disc(αL#) = α2rdisc(L#) = α2r(discL)−1.

Hence discL = αr(R∗)2. Since (discL)(R∗) ⊂ sL, we see that sL = αR, and we are done.

Now suppose αL# = L, and let x be a maximal vector. We have B(x, L#) ⊆ R by definition of L#, so that
B(x, L) ⊆ αR. As x is maximal, we can find a basis x1, ..., xn of KL with x1 = x such that L = Rx1+ · · ·+Rxn.
Let y1, ..., yn be the dual basis of KL, i.e. yi satisfies B(yi, xj) = δij . Then L

# = Ry1 + · · ·+Ryn. Hence,

αR ⊇ B(x, L) ⊇ B(x,Rαy1) = αB(x, y1)R = αR.

Thus (2) =⇒ (3).

Finally, suppose (3). Since any basis vector for L is also maximal, it is easy to see that sL = αR. In particular,
B(α−1L,L) ⊆ R. It follows from the definition of the dual that α−1L ⊆ L#. Now suppose y ∈ KL \ L, so
that y = βx for some x maximal in L with β /∈ R. Then, we have B(y, L) = βB(x, L) = αβR, which is not
contained in αR as β /∈ R. In particular, we see that no vector in KL \ L can lie in αL#, and hence αL# ⊆ L.
Statement (2) follows.

Proposition 6.30. Suppose L is a regular lattice and J is a α-modular sublattice of L. Then J splits L (i.e.
L = J ⊥M for some sublattice M of L) if and only if B(J, L) ⊆ αR.

Proof. If L = J ⊥ M , then we see that B(J, L) = B(J, J) ⊆ sL = αR. So suppose that B(J, L) ⊆ αR.
By regularity, we write KL = KJ ⊥ W for some subspace W of V . Write M = L ∩ W . We claim that
L = J ⊥ M . We already have J ⊥ M ⊆ L. Suppose x ∈ L. Write x = y + z for y ∈ KJ and z ∈ W . Then
B(y, J) = B(x, J) ⊆ B(L, J) ⊆ αR. It follows that 1

αy ∈ J#. By Proposition 6.29, we have y ∈ J . Hence
z = x− y ∈ L as well, and we are done.

The definition of sL implies the following corollary.

Corollary 6.30.1. If J is an α-modular sublattice of L, where sL = αR, then J splits L.

Corollary 6.30.2. If L is a α-modular lattice and x is an isotropic vector in L, then there exists a binary
lattice J splitting L and containing x.

Proof. Let x1, ..., xn be a basis for KL with x1 = x. By scaling x2, ..., xn, we suppose that x1, ..., xn is a basis
for L. Let y1, ..., yn be a dual basis to x1, ..., xn (i.e. B(xi, yj) = δij), so that L# = Ry1 + · · ·+Ryn. We have
αL# = L. Take J = Rx + Rαy1; this is clearly a binary sublattice of L containing x. A quick computation
shows that discJ = α2(R∗)2. Also, we have sJ ⊆ sL ⊆ αR. Hence J is α-modular as well, and so splits L by
the proposition.

Remark 6.31. Note the similarity to Corollary 1.17.1.

Suppose L is a non-zero regular lattice, and suppose α ∈ K∗. Define

Lα := {x ∈ L : B(x, L) ⊆ αR}.

Lemma 6.32. For L a non-zero regular lattice, the following holds.

1. Lα is a lattice with s(Lα) ⊆ αR.

2. Lα = L if and only if s(L) ⊆ αR.

3. Lα = αL# ∩ L.

4. βLα ⊆ Lαβ ⊆ Lα for all β ∈ R \ {0}.

5. If L is α-modular, then Lαβ = βL and Lα/β = L for all β ∈ R \ {0}.

Exercise 6.33. Prove Lemma 6.32.

46



7 Lattices over Rings of Integers of Local Fields

We will now consider lattices overOK , whereK is a non-archimedean local field with valuation |.| and uniformiser
π. Since OK is a local ring, it is a PID. Moreover, every fractional ideal of OK is of the form πrOK for r ∈ Z;
this makes the theory significantly simpler. This simple fact, for instance, implies the following very useful facts.

Lemma 7.1. If x, y ∈ L are such that |B(x, y)| is the largest, then B(L,L) = B(x, y)OK = sL.

Lemma 7.2. If x ∈ L is such that |Q(x)| is the largest, then nL = Q(x)OK .

In keeping with Section 4, in this section we will again restrict ourselves to non-dyadic fields and to Q2 only,
for simplicity. However, the theory for Q2 carries over pretty much verbatim to any 2-adic field, i.e. any dyadic
field K where 2 is a uniformiser of K.

There are significant complications if the dyadic field is not 2-adic. A simple reason is that 2sL ⊆ nL ⊆ sL; if
K is 2-adic, this double inequality immediately implies that nL = sL or nL = 2sL. If K were not 2-adic, other
cases would need to be considered. For the general theory over dyadic local fields, see [OMe73, §93].

7.1 Automorphisms of a Lattice

Suppose L is a lattice on the regular quadratic space V over K.

Lemma 7.3. Let u be any maximal anisotropic vector of L. Then τu ∈ O(L) if and only if 2B(u, L) ⊆ Q(u)OK .

Proof. If τuL = L, then 2B(u,x)
Q(u) u = x − τux ∈ L for all x ∈ L. Since u is a maximal vector of L, we have

2B(u,x)
Q(u) ∈ OK as required. On the other hand, if 2B(u, L) ⊆ Q(u)OK , then τux = x − 2B(u,x)

Q(u) u ∈ L. Hence

τuL ⊆ L, and so τu ∈ O(L).

Lemma 7.4. O(L) contains a symmetry of V .

Proof. Suppose u ∈ L with Q(u)OK = nL; in particular, u is anisotropic. We claim that u is a maximal vector.
Since u ∈ L, we already have R ⊆ cu. So suppose α ∈ cu so that αu ∈ L. Then α2Q(u) = Q(αu) ∈ nL =
Q(u)OK , which implies α2 ∈ OK . Hence α ∈ OK . It follows that cu = OK , and so u is maximal. Since

2B(u, L) ⊆ 2sL ⊆ nL = Q(u)OK ,

the condition of Lemma 7.3 is met and hence τu ∈ O(L).

In particular, we see that SO(L) ̸= O(L). Lemma 6.16 yields the following.

Corollary 7.4.1. We have clsL = cls+L.

Thus, any two lattices that are equivalent are properly equivalent. This is useful!

7.2 Jordan Decomposition

Suppose L is a non-zero regular lattice. If there exists x ∈ L with Q(x)OK = sL, then J = OKx is a s(L)-
modular sublattice of L.. On the other hand, suppose Q(x)OK ⊂ sL for all x ∈ L. Then we may pick x, y ∈ L
with B(x, y)OK = sL. Take J = OKx+OKy. Since |B(x, y)| > |Q(x)|, |Q(y)|, the quantity Q(x)Q(y)−B(x, y)2

is non-zero, and it follows that J is a regular binary lattice. This also implies that sJ = B(x, y)OK = sL and
that (discJ)OK = B(x, y)2OK = (sL)2. Hence J is actually as binary s(L)-modular sublattice of L. The upshot
is that we can always find a rank 1 or rank 2 s(L)-modular sublattice J of L. By Proposition 6.30, it follows
that

L = J1 ⊥ · · · ⊥ J2

where each of the Ji are rank 1 or 2 modular sublattices of L.

Definition. A Jordan splitting/decomposition of a lattice L is an orthogonal splitting L = L1 ⊥ · · · ⊥ Lr where
each of the Li are modular, and sL1 ⊃ · · · ⊃ sLr.

By grouping the various Ji according to their scales, we immediately get the following.
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Lemma 7.5. Every non-zero regular lattice over OK has a Jordan splitting.

We will now study to what extent the Jordan splitting is unique.

Recall the lattice Lα for α ∈ K∗.

Lemma 7.6. Suppose L = L1 ⊥ · · · ⊥ Lr is a Jordan decomposition, and let α ∈ K∗. Then sLα = αR if and
only if Li is α-modular for some i. Otherwise, if none of the Li are α-modular, we have sLα ⊂ αOK .

Proof. Notice that, as a consequence of Lemma 6.32 and the fact that αOK ⊆ βOK if and only if |α| ≤ |β|, for
a β-modular lattice L the lattice Lα is α-modular if and only if α = β; otherwise, it is γ-modular for some γ
with |γ| < |α|.

Now suppose α is as in the statement of the lemma. We already know that sLα ⊆ αOK , and that

Lα = Lα
1 ⊥ · · · ⊥ Lα

t .

If Li is not α-modular, then Lα
i will be γ-modular for |γ| < |α|. On the other hand, if Lα

i is α-modular, then
Lα
i = Li. Since sLα is the ideal generated by siL

α, the result follows.

In fact, this proof shows that if there is an α-modular component Li in the Jordan decomposition of L, then
Li will occur first in a Jordan decomposition for Lα.

Proposition 7.7. Suppose L is a lattice over OK with two Jordan splittings L = L1 ⊥ · · · ⊥ Lt and L =M1 ⊥
· · · ⊥MT . Then t = T , and for 1 ≤ i ≤ t we have sLi = sMi, nLi = nMi, and rankLi = rankMi.

Proof. Suppose that there is an α-modular component in the first Jordan splitting. The previous lemma
implies that sLα = αOK , and so (once again by the previous lemma) one of the components in the second
Jordan splitting is α-modular. The converse also holds, i.e. if there is an α-modular component in the second
Jordan splitting, then there is an α-modular component in the first Jordan splitting. In particular, we see that
t = T and that sLi = sMi for 1 ≤ i ≤ t.

Now suppose 1 ≤ i ≤ t, and take αOK = sLi = sMi. Since Li and Mi are the first components in Jordan
decompositions of Lα, we may suppose without loss of generality that i = 1. By scaling B, we may also suppose
that sL = OK . Consider the K-linear map ϕ : KL1 → KM1 defined as the composition

KL1 ↪→ KL1 ⊥ · · · ⊥ KLt = KL = KM1 ⊥ · · · ⊥ KMt ↠ KM1.

Notice that ϕ satisfies ϕ(L1) ⊆ M1. Since s(M2 ⊥ · · · ⊥ Mt) = sM2 ⊂ sM1 = OK , we see that B(z, z′) ≡
0 (modπ) for all z, z′ ∈M2 ⊥ · · · ⊥Mt. Thus, for all x, x

′ ∈ L1, we have

B(ϕx, ϕx′) ≡ B(x, x′) (modπ).

Suppose ϕx = 0 for some non-zero x ∈ KL1. By scaling x, we may suppose x is a maximal vector of L1. As L1

is assumed unimodular, Proposition 6.29 implies that B(x, y) = 1 for some y ∈ L1. Then, we have

1 = B(x, y) ≡ B(ϕx, ϕy) = 0 (modπ),

which is impossible. Hence ϕ is injective. It follows that dimKL1 ≤ dimKM1. By symmetry, it follows that
dimKL1 = dimKM1 and hence that rankL1 = rankM1.

IfK is non-dyadic, we are done as nLi = sLi. So we may suppose thatK is 2-adic. Suppose nL1 = OK = sL1.
We can thus find x ∈ L1 with Q(x) = ϵ for some ϵ ∈ O∗

K . Then Q(ϕx) ≡ Q(x) = ϵ (modπ) which implies that
Q(ϕx) ∈ O∗

K . Hence OK ⊆ nM1 ⊆ sM1 = OK , so that nM1 = OK . By symmetry, we thus see that nL1 = OK

if and only if nM1 = OK . As 2OK ⊆ nL1 ⊆ OK and 2 is a uniformiser of K, it follows that nL1 = nL2.

Definition. Suppose L and M are lattices over OK with Jordan decompositions L = L1 ⊥ · · · ⊥ Lt and
M =M1 ⊥ · · · ⊥MT . We say that these Jordan decompositions are of the same Jordan type if t = T and if for
1 ≤ i ≤ t we have sLi = sMi, nLi = nMi, and rankLi = rankMi

We have thus shown that two Jordan decompositions of the same lattice must be of the same Jordan type.
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7.3 K non-dyadic

For K non-dyadic, we have 2 ∈ O∗
K . This simple fact simplifies the entire theory of non-dyadic fields. Indeed,

notice that 2sL ⊆ nL ⊆ sL implies that sL = nL. In particular, we can find x ∈ L such that Q(x)OK = sL.
From the proof of Lemma 7.5, it follows that L has an orthogonal basis, i.e.

L = OKx1 ⊥ OKx2 ⊥ · · · ⊥ OKxn.

Lemma 7.8. If L is a unimodular lattice, there exists ϵ ∈ O∗
K such that

L ∼= ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩ ⊥ ⟨ϵ⟩ .

Proof. Since L has an orthogonal basis, and since L is unimodular, Lemma 6.27 implies that we can write
L = ⟨ϵ1⟩ ⊥ · · · ⊥ ⟨ϵn⟩ for ϵi ∈ O∗

K . Set ϵ = ϵ1 · · · ϵn. It follows from Theorem 4.47 and a quick computation of
Hasse invariants that

KL ∼= ⟨1⟩ ⊥ ⟨1⟩ ⊥ · · · ⊥ ⟨ϵ⟩ .
We can thus find a full lattice M ∼= ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩ ⊥ ⟨ϵ⟩ on KL. We claim that M ∼= L. We prove this by
induction on n = dimKL = rankL = rankM .

If n = 1, this is trivial. Suppose n ≥ 2. Since any space of dimension ≥ 2 is universal over the finite field κK ,
we may find α1, ..., αn ∈ OK such that

ϵ1α
2
1 + · · ·+ ϵnα

2
n ≡ 1 (modπ).

We cannot have all of α1, ..., αn ≡ 0 (modπ), so reordering if necessary we may suppose α1 ∈ O∗
K . An application

of Hensel’s lemma to the polynomial

ϵ1x
2 + (ϵ2α

2
2 + · · ·+ ϵnα

2
n)− 1

implies that, upon modification of α1, we can write ϵ1α
2
1 + · · · + ϵnα

2
n = 1. Thus there exists x ∈ L such that

Q(x) = 1, and so we have L = OKx ⊥ L′ for L′ a rank n− 1 unimodular lattice with discriminant ϵ(O∗
K)2. By

the induction hypothesis, L′ ∼= ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩ ⊥ ⟨ϵ⟩, and the claim follows.

Since O∗
K/(O∗

K)2 is a group of order 2, the following corollary is obvious.

Corollary 7.8.1. There are only two classes of unimodular lattices of given dimension over a non-dyadic local
field.

Theorem 7.9. Suppose L and M are lattices of the same Jordan type on the regular quadratic space V over
K. Consider Jordan splittings

L = L1 ⊥ · · · ⊥ Lt and M =M1 ⊥ · · · ⊥Mt.

Then clsL = clsM if and only if discLi = discMi for all 1 ≤ i ≤ t.

Proof. If clsL = clsM , we may suppose without loss of generality that L = M . Consider a specific i. Scaling
B, we may suppose that the modular lattices Li and Mi are in fact unimodular. Then Li and Mi are the first
components of Jordan decompositions for L1, and so we may suppose i = 1 without loss of generality.

Now, from the proof of Proposition 7.7, there is aK-linear isomorphism ϕ : KL1 → KM1 with ϕ(L1) ⊆ ϕ(M1)
and such that B(ϕx, ϕy) ≡ B(x, y) (modπ) for all x, y ∈ L1. Fix a specific basis for L1 in which the discriminant
is ϵ ∈ O∗

K . We then see that disc(ϕL1) ≡ discL1 (modπ), and so disc(ϕL1)ϵ
−1 ≡ 1 (modπ). The local square

theorem then implies that disc(ϕL1) = ϵ(O∗
K)2 as well. It follows from Lemma 6.21that ϕL1 = M1. In

particular, we see that discM1 = discL1.

Conversely, suppose that discLi = discMi for all 1 ≤ i ≤ t. Since Li and Mi are both modular of the same
scale and discriminant, it follows from Lemma 7.8 that KLi

∼= KMi, and under this isometry, Li is sent to Mi.
Combining these isometries for all i, we get σ ∈ O(V ) such that σL =M , and the result follows.

Corollary 7.9.1. Every non-zero regular lattice L over a non-dyadic field has a unique Jordan decomposition.
Moreover, two lattices in the same quadratic space with the same Jordan decomposition must be in the same
class.
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In other words, the Jordan decomposition uniquely determines the lattice, and vice versa.

Corollary 7.9.2. Fix ∆ ∈ O∗
K a quadratic non-residue in κK . If L is a regular non-zero lattice, then there

exist unique

• positive integers t ≥ 1 and m1, ...,mt ≥ 1 with m1 + · · ·+mt = rankL,

• integers e1, ..., et ∈ Z with e1 < · · · < et, and

• ϵi ∈ {0, 1} for 1 ≤ i ≤ t,

such that
L ∼= ⟨πe1⟩ ⊥ · · · ⊥ ⟨πe1⟩︸ ︷︷ ︸

m1−1 of them

⊥ ⟨∆ϵ1πe1⟩ ⊥ · · · ⊥ ⟨πet⟩ ⊥ · · · ⊥ ⟨πet⟩︸ ︷︷ ︸
mt−1 of them

⊥ ⟨∆ϵtπet⟩ .

Corollary 7.9.3. Suppose L is unimodular. We have Q(L) ⊇ O∗
K if dimL ≥ 2, and Q(L) = OK for dimL ≥ 3.

Exercise 7.10. Prove Corollary 7.9.3.

We have thus completely classified quadratic forms over OK for K non-dyadic!

Proposition 7.11. Suppose L is a full lattice in the n-ary regular quadratic space V over K. Then, every
element of O(L) is the product of at most 2n− 1 reflections in O(L).

Proof. We proceed by induction on n. The statement for n = 1 is trivial, so we suppose n ≥ 2. By suitably
changing Q, we may suppose that sL = OK . Pick σ ∈ O(L). Fix y ∈ L with Q(y) ∈ O∗

K (such a y exists as
sL = OK). From

Q(y − σy) +Q(y + σy) = 4Q(y) = 4ϵ ∈ O∗
K

it follows that one of Q(y − σy) or Q(y + σy) is a unit. If Q(y − σy) ∈ O∗
K , then τy−σy ∈ O(L) by Lemma 7.3,

and this reflection satisfies τy−σyy = σy. On the other hand, if Q(y + σy) ∈ O∗
K , then a computation shows

that τy, τy+σy ∈ O(L) and that
τy+σyτyy = σy.

Thus, in any case, we can find ρ ∈ O(L) that is the product of at most two reflections such that σy = ρy. Since
OKy is unimodular, we have L = OKy ⊥ L′ with rankL′ = n − 1, and (ρ−1σ)|KL′ ∈ O(L′). Since ρ−1σ is a
product of at most 2n − 3 reflections by the induction hypothesis, it follows that σ is the product of at most
2n− 1 reflections.

Exercise 7.12. Show that, if L is a binary regular lattice, then every element of O(L) is in fact the product of
at most 2 reflections. Hence, show that for rankL ≥ 2, every element of O(L) is the product of at most 2n− 2
reflections.

7.4 K = Q2

Remark 7.13. Rather than developing the theory of lattices for general dyadic fields as in [OMe73], I have
chosen to take the simpler and cleaner route given in [Cas78].

Recall as before that any non-zero regular lattice L has a decomposition L ∼= J1 ⊥ · · · ⊥ Jr where Ji is a
rank 1 or rank 2 modular lattice. The only possible rank 1 lattices over Z2 must clearly be one of the following

⟨2e⟩ , ⟨3 · 2e⟩ , ⟨5 · 2e⟩ , or ⟨7 · 2e⟩ ,

for some e ∈ Z. Let us now study rank 2 unimodular lattices.

Proposition 7.14. If L is a binary unimodular lattice, then L is of the form

⟨ϵ1⟩ ⊥ ⟨ϵ2⟩ , ⟨( 0 1
1 0 )⟩ , or ⟨( 2 1

1 2 )⟩ ,

where ϵ1, ϵ2 ∈ Z∗
2 are some units.
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Proof. Suppose first that nL = sL = Z2. Then there exists x ∈ L with Q(x) ∈ Z∗
2. Then Z2x is unimodular,

and we have a splitting L = Z2x ⊥ Z2y for some y ∈ L. Since sL = Z2, it follows that L ∼= ⟨ϵ1⟩ ⊥ ⟨ϵ2⟩ for some
units ϵ1, ϵ2.

So we may thus suppose that nL = 2Z2. Pick x, y ∈ L such that B(x, y) ∈ Z∗
2. Since nL = 2Z2, it follows

that x ̸= y and that Q(x), Q(y) ∈ 2Z2. Set δ := Q(x)Q(y)−B(x, y)2; we have

|δ|2 = max{|Q(x)|2|Q(y)|2, 1} = 1

since B(x, y) ∈ Z∗
2. Hence, disc(Z2x+Z2y)Z2 = Z2 = (discL)Z2, and so Lemma 6.21 implies that L = Z2x+Z2y.

Suppose that Q(x) ∈ 2Z∗
2 and Q(y) ∈ 2Z∗

2. By scaling x we may suppose that Q(x) = 2a for some a ∈
{±1,±3}, and by scaling y we can assume that B(x, y) = 1. Write Q(y) = 2bϵ2 for ϵ ∈ Z∗

2 and b ∈ {±1,±3}.
Consider the polynomial

p(x) = (4ba2ϵ2 − a)x2 + (1− 4abϵ2)x+ bϵ2 − 1.

We have p′(x) = 1 − 4abϵ2 + 2x(4ba2ϵ2 − a), and so |p′(x)|2 = 1. Since p(1) ≡ −a + 1 + bϵ2 − 1 ≡ 0 (mod 2)
(as all of a, b, ϵ are 2-adic units, and so are all 1 (mod 2)), Hensel’s Lemma then implies the existence of β ∈ Z∗

2

such that p(β) = 0. With this choice of β, one can check that

Q
(
βx+ (1− 2aβ)y

)
= 2 and B

(
βx+ (1− 2aβ)y, x

)
= 1.

Thus, by replacing y with 1− 2aβ, we may suppose that Q(y) = 2. One then checks that L = Z2x
′+Z2y where

Q(x′) = 2 and B(x′, y) = 1 for x′ := (1− 2α)x+ αy where α ∈ Z∗
2 is one of the roots of the polynomial

a(1− 2x)2 + x2 + x(1− 2x)− 1 = 0.

Hence, we see that L ∼= ⟨( 2 1
1 2 )⟩.

On the other hand, suppose that one of Q(x) or Q(y) is divisible by 4, say without loss of generality that
4|Q(y). By scaling x by a unit, we may suppose that B(x, y) = 1 as usual. Let ξ be a root of the polynomial

p(t) =
Q(y)

2

(
1−Q(x)t

)2
+
Q(x)

2
t2 + t

(
1−Q(x)t

)
such that ξ ≡ 0 (mod 2); since p(0) = 1

2Q(y) ≡ 0 (mod 2) and p′(0) = 1−Q(y)Q(x), one such ξ exists by Hensel’s
Lemma. Then, one can check that L = Z2x

′ + Z2y
′ with Q(x′) = 0 = Q(y′) and B(x′, y′) = 1, where

x′ :=
(
1− 1

2Q(x)ξ
)
x− 1

2Q(x)(1−Q(y)ξ)y and y′ := ξx+ (1−Q(y)ξ)y.

The result follows.

We have thus proven the following.

Corollary 7.14.1. The class of any regular lattice L over Z2 contains a lattice which is an orthogonal direct
sum of the following types of rank 1 or 2 lattices:

⟨2e⟩ , ⟨3 · 2e⟩ , ⟨5 · 2e⟩ , ⟨7 · 2e⟩ , ⟨2e ( 0 1
1 0 )⟩ , and ⟨2e ( 2 1

1 2 )⟩

where e ∈ Z.

However, such an orthogonal direct sum need not be unique. See the following exercises for example.

Exercise 7.15. Show the following equivalences, where u ∈ {1, 3, 5, 7} can be arbitrary.

⟨1⟩ ⊥ ⟨1⟩ ∼= ⟨5⟩ ⊥ ⟨5⟩ ; ⟨1⟩ ⊥ ⟨2⟩ ∼= ⟨3⟩ ⊥ ⟨6⟩ ; ⟨1⟩ ⊥ ⟨4⟩ ∼= ⟨5⟩ ⊥ ⟨20⟩ ; ⟨u⟩ ⊥ ⟨( 0 1
1 0 )⟩ ∼= ⟨u⟩ ⊥ ⟨1⟩ ⊥ ⟨−1⟩ ;

⟨u⟩ ⊥ ⟨( 2 1
1 2 )⟩ ∼= ⟨3u⟩ ⊥ ⟨−u⟩ ⊥ ⟨−u⟩ ; ⟨( 2 1

1 2 )⟩ ⊥ ⟨( 2 1
1 2 )⟩ ∼= ⟨( 0 1

1 0 )⟩ ⊥ ⟨( 0 1
1 0 )⟩ .

Given two Jordan decompositions, one can indeed figure out quickly whether two are the same or not.
However, due to the tedious and unilluminating nature of the proof, and since we won’t have any need for it,
we shall skip it. See [OMe73, §93G] for the proof.
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Let L and M be full lattices in a regular quadratic space over Q2. Suppose they have Jordan decompositions

L = L1 ⊥ · · · ⊥ Lt and M =M1 ⊥ · · · ⊥Mt

of the same Jordan type (so that rankLi = rankMi, si := sLi = sMi, and ni := nLi = nMi). Recall that, in a
Jordan decomposition, the Li (and Mi) are ordered so that

s1 ⊇ s2 ⊇ · · · ⊇ st.

Set
L(i) := L1 ⊥ · · · ⊥ Li and M(i) :=M1 ⊥ · · · ⊥Mi.

Notice that L(t) = L and M(t) = M . Let dLi , d
M
i ∈ Q∗

2 be chosen so that discL(i) = dLi (Z∗
2)

2 and discM(i) =
dMi (Z∗

2)
2. Note that dLi and dMi are uniquely determined up to multiplication by a square of a unit. Finally, set

ui = ord2ni and vi = ord2si, so that ni = 2uiZ2, si = 2viZ2, and vi ≤ ui ≤ vi + 1.

Theorem 7.16. With the notation as above, we have clsL = clsK if and only if the following conditions hold
for each 1 ≤ i ≤ t− 1:

• dLi /d
M
i ∈ Z∗

2 and dLi /d
M
i ≡ 1 (mod 2ui+ui+1−2vi)

• there exists an isometry Q2L(i) ↪→ Q2M(i) ⊥ ⟨2ui⟩ whenever 2ui ≤ ui+1.

Remark 7.17. John Conway and Neil Sloane in Chapter 15 of their book [CS13] give a different characterisation
that turns out to be more computationally efficient and easier to work with. Since that would require introducing
new notation, we will not go into any details here.

8 Lattices over Z
We will now study regular lattices in a quadratic space over Q. Notice that Z∗ = {±1}, and so (Z∗)2 = {1}.
In particular, the discriminant discL ∈ Q∗/(Z∗)2 = Q∗ is actually a well-defined rational number!. We will
continue to denote this rational number by discL.

Notice also that every non-zero fractional ideal a can be written as a = aZ for a unique choice of positive
rational number a ∈ Q>0. In particular, we can pick out a canonical choice s(L) and n(L) for the generators of
the scale and norm ideals. We thus assume from now on that s(L), n(L) ∈ Q>0.

Notice that, for any fractional ideals a and b of Z, we have

a ⊆ b if and only if
a

b
∈ Z

where a, b ∈ Q>0 are chosen so that a = aZ and b = bZ. We introduce convenient notation.

Definition. Given a, b ∈ Q∗, write b|a if a
b ∈ Z, or equivalently, if aZ ⊂ bZ. We write b ∤ a if this does not hold.

This is simply extending the usual notion of divisibility of integers to the rational numbers.

Example 8.1. For instance, we can write 1
6 |

1
3 , or

4
5 |20.

We can thus reframe many results from Section 6 in more down-to-earth terms involving the honest rational
numbers discL, s(L), and n(L). For instance, Lemma 6.21 can be rephrased as saying that

If L and M are regular lattices of the same rank with M ⊆ L, then discL|discM . Moreover,
discM = ±discL if and only if L =M .

As another example, Lemma 6.25 says that s(L)r|discL for r = rankL.

8.1 Localisation

Suppose L is a lattice in a quadratic space V over Q. We have already discussed the localisations Vp := V ⊗QQp

for each prime p, as well as V∞ = V ⊗Q R. We can similarly define

Lp := L⊗Z Zp ⊂ Vp
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for all primes p. It is easy to see that Lp is a lattice for all primes p. If we view V ⊂ Vp, then Lp ⊂ Vp can be
viewed as simply as the subset ZpL, i.e. the Zp-span of L ⊂ V ⊂ Vp. If

L = Zx1 + · · ·+ Zxn,

then
Lp = Zpx1 + · · ·+ Zpxn.

Recall that we have various operations on a lattice. It is easy to see that

(L+M)p = Lp +Mp, (L ∩M)p = Lp ∩Mp, and (aL)p = aLp,

where in the last equality a ∈ Q∗ is arbitrary, and we as usual embed Q∗ ⊂ Q∗
p.

As usual, given a lattice L and a prime p, the invariants of Lp are closely related to the invariants of L. For
instance, we have

discLp = (discL)(Z∗
p)

2, s(Lp) = s(L)Zp, and n(Lp) = n(L)Zp.

In particular, the following lemma is immediate from the definitions.

Lemma 8.2. Suppose a ∈ Q∗. Then, L is a a-modular if and only if Lp is a-modular (viewing a ∈ Q∗
p) for all

primes p.

We also have the following.

Lemma 8.3. Suppose L and M are full lattices in a regular quadratic space V over Q. Then Lp = Mp for
almost all primes p. If Lp =Mp for all primes p, then L =M .

Proof. Suppose first that L ⊆ M . Then Lp ⊆ Mp. For almost all primes p, we have |discL|p = 1 = |discM |p,
and so for almost all primes p we have discLp/discMp ∈ Z∗

p. Lemma 6.21 then implies that Lp =Mp for almost
all p. For the second statement, if Lp = Mp for all primes p, then |discL|p = |discM |p for all primes p, and so
discL = ±discM . It follows again from Lemma 6.21 that L =M .

Now consider any full lattices L and M . Then L ∩M is a full lattice on V contained in both L and M . By
the previous argument, there exist finite sets of primes S and T such that Lp = (L ∩M)p for all p /∈ S and
Mp = (L ∩M)p for all p /∈ T . It follows that Lp = Mp for all p /∈ S ∪ T . If Lp = Mp for all primes p, then we
have Lp = (L ∩M)p =Mp for all primes p, and by the previous argument we have L = L ∩M =M .

Remark 8.4. It seems like we have already shown a form of local-global compatibility. However, note that we
are requiring Lp =Mp on-the-nose. It is in fact not true that if Lp and Mp are in the same class over Qp for all
primes p, then L and M are in the same class over Q. In fact, pretty much the rest of these notes are dedicated
to studying the failure of this local-global principle!

We have a sort of converse.

Proposition 8.5. Let V be a regular quadratic space over Q. Suppose, for each prime p, we are given a full
lattice Mp in Vp. Suppose there exists a full lattice K in V such that, for almost all primes p, we have Kp =Mp.
Then there exists a full lattice L in V such that Lp =Mp for all primes p.

Proof. It is enough to show the following: given any fixed prime q such that there exists a full lattice K in V
such that Kp = Mp for all primes p ̸= q, there exists a full lattice L such that Lp = Mp for all p. The general
result will follow by repeatedly applying this statement.

Now, we claim that we can find a Q-basis x1, ..., xn of V such that

Mq = Zqx1 + · · ·+ Zqxn.

Indeed, take any Q-basis y1, ..., yn for V . Then y1, ..., yn are a Qp-basis for Vp. By scaling yi if necessary, we
may suppose that y1, ..., yn ∈Mq. Let η1, ..., ηn ∈ Vq be a basis for Lq, so that

Mq = Zqη1 + · · ·+ Zqηn.
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Write each ηj as

ηj =

n∑
i=1

αijyi

where αij ∈ Qq. Since Q is dense in Qp, for any 0 < ϵ < 1 we can find aij ∈ Q such that

|aij − αij |q < ϵ

for all 1 ≤ i, j ≤ n. In particular, aij − αij ∈ Zq. Since addition and multiplication in Qq are continuous, we
make ϵ small enough so that the inequality

|det(aij)− det(αij)|q < |det(αij)|q

holds. This implies that |det(aij)|q = |det(αij)|q. Set

xj :=

n∑
i=1

aijyi.

As |det(aij)|q ̸= 0, it follows that (aij) ∈ GLn(Q) and so x1, ..., xn forms a Q-basis for V . Since aij −αij ∈ Zq,
it follows that xj − ηj ∈ Zqy1 + · · ·+ Zqyn ⊆Mq. Hence

Zpx1 + · · ·+ Zpxn ⊆Mq.

We can thus write

xj =

n∑
i=1

γijηi

for γij ∈ Zp, we have (γij) = (αij)
−1(aij) and so det(γij) ∈ Z∗

p. Lemma 6.20 implies that

Mq = Zqx1 + · · ·+ Zqxn,

and the claim is proven.

It follows from the above claim that we can find a full lattice J in V with Jq = Mq. We also have the full
lattice K in V such that Kp = Mp for all p ̸= q. Let a ∈ Z \ {0} be such that aJ ⊆ K. We know that the
abelian group K/aJ is finite, and as such is of the form

K/aJ = (Z/b1Z)[z1]⊕ · · · ⊕ (Z/brZ)[zr]

for some 1 ≤ r ≤ n, where zi ∈ K. Clearly z1, ..., zr are linearly independent. Extend this to a basis
z1, ..., zr, ..., zn for K, where we may moreover assume that zi + aJ /∈ Z[z1] + · · · + Z[zn]. It follows then that
zi ∈ aJ as well for i > r. We thus have

K = Zz1 + · · ·+ Zzn, and J = b1
a Zz1 + · · ·+ br

a Zzr + Zzr+1 + · · ·+ Zzn.

For each 1 ≤ i ≤ r, set ci = qordqbi−ordqa so that ci ∈ Z∗
p for all p ̸= q and |ci|q = | bia |q. One then sees that

L = Zc1z1 + · · ·+ Zcrz1 + Zzr+1 + · · ·+ Zzn

satisfies Lq = Jq =Mq and Lp = Kp =Mp for all p ̸= q.

8.2 The Adelized Orthogonal Group

Notice that GLn(Qv) has a natural topology on it induced by the topology on Qv, for any place v of Q. Hence
GL(Vv) has a natural topology induced by the topology on Qv. Since O(Vv) ⊂ GL(Vv), we thus have a topology
on the group O(Vv). This makes O(Vv) a topological group. Similarly, we can endow a natural topology on
SO(Vv) for each place v, and thus on SOA(V ) as well.

Theorem 8.6 (Weak Approximation for the Special Orthogonal Group). Let S be any finite set of places of
Q. Then, the diagonal embedding

SO(V ) ↪→
∏
v∈S

SO(Vv)

has dense image.
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Corollary 8.6.1. Let S be any finite set of primes of Q, and suppose φp ∈ SO(Vp) is given for all p ∈ S.
Then, for any lattice L, there exists σ ∈ SO(V ) such that σLp = φpLp for all p ∈ S.

This corollary fails if there are infinitely many p for which we are given isometries in SO(Vp), we are unable
to stitch them together to give an element of SO(V ) as in the corollary. However, we would like to package
such information anyway. This motivates the following definition.

Definition. Fix a full lattice L on V . Let OA(V ) be the subgroup of the product O(V∞)×
∏

pO(Vp) consisting
of those σ = (σv) such that, for almost all primes p, we have σp ∈ O(Lp). This group OA(V ) is the adelic
orthogonal group, and its elements are adelic isometries.

As usual, the group operation is done componentwise. Note that this group OA(V ) is independent of the
choice of L by Lemma 8.3.

Given any σ ∈ O(V ), we have a unique element σ ∈ O(Vp) extending σ by linearity. This element satisfies
σLp = (σL)p for any lattice L in V . Hence, we can view O(V ) as a subgroup of O(Vp). Doing this for each p,
we thus have a diagonal embedding

O(V ) ↪→ OA(V ).

This is the subgroup of principal adelic isometries.

Similarly, we can define the adelic special orthogonal group SOA(V ) to be the subgroup of the product
SO(V∞) ×

∏
p SO(Vp) consisting of those σ = (σv) such that, for almost all primes p, we have σp ∈ SO(Lp).

We call elements of SOA(V ) adelic rotations. Again SOA(V ) is well-defined and independent of the choice of
L, and we have a diagonal embedding

SO(V ) ↪→ SOA(V ).

This is the subgroup of principal adelic rotations. Since SO(Vp) ⊂ O(Vp), we also have

SOA(V ) ⊂ OA(V ).

Given a lattice L, we can define the groups

OA(L) := {(σv) ∈ OA(V ) : σp ∈ O(Lp) for all primes p} = O(V∞)×
∏
p

O(Lp),

SOA(L) := {(σv) ∈ SOA(V ) : σp ∈ SO(Lp) for all primes p} = SO(V∞)×
∏
p

SO(Lp).

As usual, we have embeddings O(L) ⊂ OA(L) and SO(L) ⊂ SOA(L).

Lemma 8.7. OA(L) ∩O(V ) = O(L) and SOA(L) ∩ SO(V ) = SO(L).

Exercise 8.8. Using ??, prove Lemma 8.7.

Lemma 8.9. Let L be any full lattice in V and σ ∈ OA(V ). Then, there exists a unique full lattice K in V
such that σpLp = Kp for all primes p.

Proof. By definition, σ ∈ OA(V ) preserves Lp for almost all p. Thus, L is a full lattice in V satisfying Lp = σpLp

for almost all primes p. Proposition 8.5 immediately implies the existence of a full latticeK such that σpLp = Kp

for all primes p. Uniqueness is guaranteed by ??.

This lemma immediately yields the following definition.

Definition. Given σ ∈ OA(V ) and L a full lattice in V , set σL to be the unique full Z-lattice in V such that
σpLp = (σL)p.

This clearly extends the notion of a principal adelic rotation σ ∈ O(V ) acting on a full lattice.

Exercise 8.10. Show that

OA(L) = {(σv) ∈ OA(V ) : (σv)L = L} and SOA(L) = {(σv) ∈ SOA(V ) : (σv)L = L}.
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8.3 The Genus of a Lattice

As mentioned previously, the local-global principle fails for lattices, i.e. it is possible for two Z-lattices L and
M to satisfy Lp

∼=Mp for all primes p, and yet L ̸∼=M . See for instance the following exercise.

Exercise 8.11. Show that the lattices ⟨1⟩ ⊥ ⟨11⟩ and
〈(

3 −1
−1 4

)〉
are isomorphic over Zp for all primes p, and yet

they are not in the same class over Z.

It is also possible for a lattice L and rational number a ∈ Q∗ to satisfy a ∈ Q(Lp) for all p (i.e. L represents
a p-adically for all p), and yet a /∈ Q(L). See for example the following exercise.

Exercise 8.12. Show that L = ⟨1⟩ ⊥ ⟨11⟩ represents 3 p-adically for all primes p, but does not represent 3 over
Q.

Definition. The genus genL of a full lattice L in V is the set of all full lattices M in V such that for every
prime p we have Mp ∈ clsLp.

Recall that Lp =Mp for almost all primes p. An application of Proposition 8.5 then implies that

gen(L) = {σL : σ ∈ OA(V )}.

The orbit-stabiliser theorem then implies that gen(L) is in bijection with OA(L)\OA(V ). It is clear that the set
of all full lattices on V is partitioned into genera.

Now, recall Corollary 7.4.1 states that cls(Lp) = cls+(Lp) for all primes p. The following lemma then follows.

Lemma 8.13. gen(L) = {σL : σ ∈ SOA(V ).

Example 8.14. The previous exercise says that L := ⟨1⟩ ⊥ ⟨82⟩ and M := ⟨2⟩ ⊥ ⟨41⟩ satisfies genL = genM but
clsL ̸= clsM .

Lemma 8.15. Suppose L and M are in the same genus. Then s(L) = s(M), n(L) = n(M), and discL =
±discM .

Proof. Since Lp
∼=Mp for all primes p, it follows that s(L)Zp = s(M)Zp, n(L)Zp = n(M)Zp, and (discL)(Z∗

p)
2 =

(discM)(Z∗
p)

2. Thus |s(L)|p = |s(M)|p for all primes p. In particular, s(L) and s(M) have the same prime
factorisation (up to sign). By convention, we chose s(−) to be positive, and so it follows that s(L) = s(M).
Similarly n(L) = n(M). We also see that |discL/discM |p = 1 for all primes p, and thus that discL = ±discM .

Since a lattice L is a-modular (for a ∈ Q∗) if and only if discL = ±ar and s(L) = |a|, the following is obvious.

Corollary 8.15.1. For any a ∈ Q∗, if there is an a-modular lattice in a given genus then every lattice in that
genus is a-modular.

Proposition 8.16. Let L be any full lattice in V , where V is a regular quadratic space over Q. Suppose M is a
lattice in V (not necessarily full). Suppose, for every prime p, there exists σp ∈ O(Vp) such that σp(Mp) ⊆ Lp.
Then, there exists a lattice L′ ∈ genL such that M ⊆ L′.

Proof. Extend M to a full lattice M ′ in V . By ??, there exists a finite set S such that M ′
p = Lp for all primes

p /∈ S. In particular, Mp ⊆ Lp for all primes p /∈ S. Proposition 8.5 implies the existence of a full Z-lattice L′

in V such that

L′
p =

{
σ−1
p Lp if p ∈ S,

Lp if p /∈ S.

Clearly L′ ∈ genL. Also, we have Mp ⊆ L′
p for all primes p, which implies that M ⊆ L′.

Corollary 8.16.1. Suppose a ∈ Q(V ) ⊆ Q∗ satisfies a ∈ Q(Lp) for all primes p. Then, there exists a lattice
L′ in clsL such that a ∈ Q(L′).

This corollary motivates the following definition.
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Definition. Given a ∈ Q∗ and a full lattice L, we say that genL represents a if a ∈ Q(Lp) for all primes p.

Equivalently, by the corollary, genL represents a if and only if there exists L′ ∈ genL such that a ∈ L′.

8.4 Finiteness of Class Number

We seek to prove the following theorem.

Theorem 8.17. Suppose we are given d ∈ Z \ {0}, s ∈ N, and r ≥ 1. Then, the number of proper classes of
lattices L with rank = r, s(L) = s, and discL = d is finite.

Since the discriminant and the scale are preserved in a genus, we immediately get the following.

Corollary 8.17.1. Each genus is partitioned into finitely many (proper) classes.

Before we can prove this lemma, we need a preliminary lemma.

Lemma 8.18. Let V be a regular quadratic space over Q. Then, there exists a constant CV (depending only
on dimQ V ) such that for any full lattice L with s(L) ∈ Z, there exists a maximal vector x ∈ L such that

0 < |Q(x)|∞ ≤ CV |discL|1/n∞ .

Proof. Set n = rankV and d = discL. We prove the lemma by induction on n. For n = 1, since L = Zx for x
a maximal vector, the result follows from a direct computation. So suppose n ≥ 2. By replacing Q with −Q if
necessary, we may suppose that ind+V ≥ 1, so that Q(L) ∩R>0 ̸= ∅. Since Q(y) ∈ Z for all y ∈ L, there exists
a minimum m ∈ Q(L)∩N. Take x ∈ L with Q(x) = m. If x were not maximal, then x = ax′ for some maximal
vector x′ of L and some a ∈ Z \ {±1}, and Q(x) = a2Q(x′) > Q(x′) contradicts the minimality of x. Thus x is
maximal. We claim that x satisfies the required double inequality.

Since x is maximal, there exists a basis x1 = x, x2, ..., xn for L. Write V ′ = Qx2 + · · · + Qxn, L :=
Zx2 + · · ·+ Zxn. Clearly, L′ is a full lattice in V ′. We equip V ′ with a new bilinear form

BV ′ : V ′ × V ′ → Q

defined by
BV ′(v, w) = mBV (v, w)− 2BV (x, v)BV (x,w).

for all v, w ∈ V ′. With this choice of BV ′ (and corresponding quadratic form QV ′), one can actually compute
that

mQV (cx+ z) = (cm+BV (x, z))
2
+QV ′ (z)

for all z ∈ V ′ and all c ∈ Q. A computation shows that s(L′, BV ′) ∈ Z and

disc(L′, BV ′) = mn−2d.

Thus, then V ′ and L′ satisfy the conditions for the inductive hypothesis, and so there exists a constant CV ′

(depending only on n) and there exists a maximal vector x′ ∈ L′ such that

0 < |QV ′(x′)|∞ ≤ CV ′ |mn−2d|1/(n−1)
∞ .

Plugging in the definition of QV ′ , we have the double inequality

0 < |mQV (x
′)−BV (x

′, x)2|∞ ≤ CV ′ |mn−2d|1/(n−1)
∞

Choose an integer a ∈ Z such that

• if QV ′(x′) > 0, then a satisfies |ma+BV (x
′, x)|∞ ≤ m

2 ;

• if QV ′(x′) < 0, then a satisfies m
2 < |ma+BV (x

′, x)|∞ ≤ m.

and set y := ax+ x′ ∈ L. We have

QV (y) = a2m+QV (x
′) + 2aB(x′, x).

57



First suppose that QV ′(x′) > 0 so that mQV (x
′) > BV (x

′, x)2. It is then clear that QV (y) >
1
m (am +

B(x′, x)) > 0. By minimality of m, we thus have QV (y) ≥ m. Then,

m2 ≤ mQV (y) = (am+BV (x
′, x))2 +QV (x

′)−B(x′, x)2 ≤ 1

4
m2 + CV ′ |mn−2d|1/n−1

∞ .

Rearranging, we have

mn ≤
(
4CV ′

3

)n−1

|d|,

and so we can take CV =
(

4CV ′
3

)1− 1
n

in this case.

Finally, suppose that QV ′(x′) < 0 so that mQV (x
′) < BV (x

′, x)2. Then,

mQV (y) = a2m2 +mQV (x
′) + 2amB(x′, x) < (am+BV (x

′, x))2 ≤ m2

so that QV (y) < m. But m ∈ QV (L) ∩ N is minimal, which implies that QV (y) ≤ 0. We thus have

0 ≤ −mQV (y) = −(am+BV (x
′, x))2 −QV ′(y) ≤ −(am+BV (x

′, x))2 + CV ′ |mn−2d|1/(n−1)
∞ ,

and so
1

4
m2 < (am+BV (x

′, x))2 ≤ CV ′ |mn−2d|1/(n−1)
∞ .

Hence
mn < (4CV ′)n−1|d|

in this case.

Proof of Theorem 8.17. We proceed by induction on n = rankL = dimV . By Lemma 8.18, we can find a
maximal vector x ∈ L such that h := Q(x) is uniformly bounded (in particular, independent of L). Thus h can
only belong to a finite set of integers depending only on the quadratic space V .

Since x is maximal, there exists a basis x1 = x, x2, ..., xn for L. Write V ′ = Qx2 + · · · + Qxn, L :=
Zx2 + · · ·+ Zxn. Clearly, L′ is a full lattice in V ′. We equip V ′ with a new bilinear form

BV ′ : V ′ × V ′ → Q

defined by
BV ′(v, w) = mBV (v, w)− 2BV (x, v)BV (x,w).

for all v, w ∈ V ′ (this is the same bilinear form considered in the proof of Lemma 8.18). By induction, we know
that L′ (equipped with QV ′) is isomorphic to one of a finite set of lattices. Replacing L′ and V ′ if necessary
(here we use Witt’s Extension Theorem), we know that L′ is one of a finite set of rank n − 1 lattices of given
discriminant. Replacing x with x+

∑n
i=2 cixi for carefully chosen ci ∈ Z, we may also uniformly bound B(x, xi)

for i ≥ 2 by h, and so it follows that (L,QV ) can only come from a finite set of lattices (equipped with a
quadratic form). The result now follows.

Remark 8.19. This proof is based on the one given in [Cas78]. The proof in [OMe73] is longer since it proves
Theorem 8.17 for arbitrary number fields.

Definition. The class number of a lattice L in a quadratic space V is the number of classes in the genus of L.

Example 8.20. Consider L = ⟨( 1 0
0 11 )⟩. It turns out that the class number of L is 2, (a representative of) the

other class being L′ =
〈(

3 −1
−1 4

)〉
.

Remark 8.21. One can compute the genus of a lattice L using the programming language SAGE. See the
quadratic forms module.

There are other interesting results involving the class number of a lattice, which we shall not prove.

Theorem 8.22 (Kneser [PRR93, Theorem 8.6]). Suppose V is a regular isotropic quadratic space over Q.
Then, the class number of a full lattice is always a power of 2. Moreover, for any d ≥ 0, there exists a full
lattice with class number 2d.

Theorem 8.23 ([PRR93, Theorem 8.9]). Suppose V is a regular anisotropic quadratic space over Q. For any
positive integer c ∈ N, there exists a full lattice L on V whose class number is divisible by c.
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8.5 Smith-Minkowski-Siegel Mass Formula

In this section, we will assume that our quadratic space V has dimension at least 2 and is positive definite, i.e.
that V ⊗Q R ∼= ⟨1⟩ ⊥ · · · ⊥ ⟨1⟩ over R. This second condition gives us the following lemma.

Lemma 8.24. If V is a positive definite quadratic space, then for any full lattice L in V the group O(L) is
finite.

Proof. For V positive definite, the group O(V ⊗Q R) is compact as a topological space. Moreover, O(L) is a
discrete closed subgroup of O(V ⊗Q R). It follows that O(L) is a finite group.

Hence, for any full lattice L inside a positive definite quadratic space V , it makes sense to talk about the
order |SO(L)|. Since every other lattice in the genus of L is also a full lattice in V (why?), we see that the
following sum

m(L) :=
∑
L′

1

|SO(L′)|

makes sense, where L′ runs over a set of class representatives of the genus of L.

Definition. The mass of a positive definite lattice (i.e. a full lattice in a positive definite quadratic space) is
defined to be the quantity

m(L) :=
∑
L′

1

|SO(L′)|

where L′ runs over a set of class representatives of the genus of L.

We also have so-called local masses, which we now describe. Fix a prime number p. Let |discL|p = p−a (i.e.
pa is the power of p occurring in the factorisation of discL. We then define

mp(L) :=
p

1
2

(
rn(n−1)+a(n+1)

)
#{X ∈ GLn(Z/prZ) : XtApX ≡ Ap (mod pr)}

where Ap is a Gram matrix of Lp (so that L ∼= ⟨Ap⟩ over Z), and where r is large enough.

Remark 8.25. One should think of mp(L) as trying to ‘measure’ the size of SO(Lp). Usually, the size of a ‘large
enough r’ should be determined by the entries of Ap. For instance, for p = 2, a good heuristic is that r should
be something like 3 more than the highest power of 2 dividing any of the coefficients of Ap.

The significance of the various masses defined above is the following theorem, which we do not prove.

Theorem 8.26 (Smith-Minkowski-Siegel Mass Formula). For any full lattice L in a positive definite quadratic
space, with n = rankL, we have

m(L) = 2π− 1
4n(n+1)

 n∏
j=1

Γ

(
j

2

)∏
p

2mp(L),

where Γ(n) = (n− 1)! for n ≥ 1 an integer, and

Γ

(
n+

1

2

)
=

(2n)!

4nn!

√
π

for n ≥ 0.

Remark 8.27. The formulation of the Smith-Minkowski-Siegel mass formula given above is due to Conway and
Sloane [CS88], and is geared towards computation. There is a less explicit, but mathematically more significant
and deeper, way of writing the mass formula. We shall omit such a formulation. For a history of this mass
formula, see [CS88, Section 2].

As it stands, mp(L) is difficult to compute. The standard local masses are much easier to compute. Let
s := ⌊n+1

2 ⌋. Then,

µp(L) :=
1

2
· 1

1− ϵp−s
·

∏
2≤j<n,j even

1

1− p−j
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where

ϵ :=

{
0 if n odd or p|2discL,
[(−1)sdiscL, p]p otherwise.

.

It turns out that
mp(L) = µp(L)

for almost all primes p; in fact, we have such an equality if p is an odd prime and Lp is unimodular. The reason
we care about the standard masses is that∏

p

µp(L) = ξL
∏

2≤j<n,j even

ζ(j)

where ξL = 1 if n is odd, and for n even we have

ξL = ζ(−1)sdiscL(s) :=
∏

p odd

1

1− [(−1)sdiscL, p]pp−s
.

Here, ζ denotes the usual Riemann zeta function. Its values at the first few even positive integers are given
below.

n 1 2 3 4 5

ζ(2n) π2

6
π4

90
π6

945
π8

9450
π10

93555

Table 1: Special Values of the Riemann Zeta Function

The value of ζD(s) for small values of D and s were calculated by Conway and Sloane (see [CS88, Table 6]
for the full table), some of which are given in the table below.

discL s = 1 s = 2
1 1/4 1/8
2 1/2 1/4
3 1/2 1/2
4 1/4 1/8
5 1 1
6 1 3/2
7 1/2 2
8 1/2 1/4
9 1 3
10 1 7/2
11 3/2 7/2
12 1/2 1/2
13 1 5
14 2 5
15 1 6

Table 2: Tables of Values of ds−1
√
d

πs ζ(−1)sd(s)

Hence, we see that the mass formula can be rewritten as

m(L) = 2π− 1
4n(n+1)ξL

 n∏
j=1

Γ

(
j

2

) ∏
2≤j<n,j even

ζ(j)

 ∏
p,Lp not unimodular

mp(L)

µp(L)
.

For p odd, we can also calculate mp(L) from a Jordan decomposition

Lp = J1,p ⊥ · · · ⊥ Jr,p
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of Lp directly. Here, the J1,p are modular Zp-lattices. Recall that for p odd, while L may have multiple
Jordan decompositions, the values of rankJi,p, discJi,p, and sJi,p remain the same. Write rankJi,p = ni, and
sJi,p = puiZp for some ui ∈ Z. By definition of the Jordan decomposition, we have

u1 < u2 < · · · < ur

. In this case, by modularity, we know that discJi,p = puiniϵi for some unit ϵi ∈ Z∗
p. It turns out that

mp(L) =

r∏
i=1

µp(Ji,p)
∏

1≤i<j≤r

p
1
2ninj(uj−ui).

Thus we can calculate the local masses at odd primes p inductively.

Remark 8.28. There is a similar way to compute m2(L) using the Jordan decomposition. It is however far more
complicated than the case of an odd prime p, so we shall ignore it. See [CS88] for details.

8.6 An Example of a Genus Computation

Let us do an example of a genus computation for the lattice L = Ze1 ⊥ Ze2 ⊥ Ze3 in the quadratic space

V = ⟨1⟩ ⊥ ⟨1⟩ ⊥ ⟨7⟩

(where Q(e1) = 1 = Q(e2) and Q(e3) = 7). In other words, we compute the genus of the quadratic form
x2 + y2 + 7z2.

Remark 8.29. Even for n = 3, we need to resort to some computer computations. For n = 2, it is still somewhat
possible to compute by hand only.

The idea is to first compute the mass of the genus, and then to construct explicit examples of class repre-
sentatives. Using the notation introduced in the previous section, we have n = 3 so s = 2. Note that Lp is
unimodular whenever p ̸= 2, 7, so we ignore such primes.

Let us first compute the local mass at 7. We have

µ7(L) =
1

2
· 1

1− 7−2
=

49

96
.

On the other hand, we have the Jordan decomposition L7 = J1,7 ⊥ J2,7 where J1,7 ∼= ⟨1⟩ ⊥ ⟨1⟩ and J2,7 ∼= ⟨7⟩.
We have

µ7(J1,7) =
1

2
· 1

1− [−1, 7]77−1
=

7

16
and m7(J2,7) =

1

2
,

so that

m7(L) =
7

16
· 1
2
· 7 1

2 (2)(1)(1−0) =
49

32
.

It remains to compute the local masses at 2. To compute m2(L), we could try to take some small r and
compute the number of matrices X ∈ GL3(Z/2rZ) such that

Xt

1
1

7

X ≡

1
1

7

 (mod 2r).

For n = 2, such a computer search would indeed be possible (in fact, one could probably compute this order by
hand). We instead use SAGE. The code

from sage.quadratic forms.genera.genus import genera

X = Matrix(ZZ, 3, [1, 0, 0, 0, 1, 0, 0, 0, 7])

print(Genus(X).local symbol(2).mass())

outputs m2(L) =
1
4 . On the other hand, we also have

µ2(L) =
1

2
· 1

1− 2−2
=

2

3
.
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Putting all of this together, we find that the mass of this lattice L is, by the Smith-Minkowski-Siegel formula,

m(L) = 2π−3 ·
√
π1 · 2

4

√
π · π

2

6
· 1/4
2/3

· 49/32
49/96

=
3

16
.

Remark 8.30. SAGE verifies this for us. The command Genus(X).mass() outputs 3/16 as expected.

We now want to compute |SO(L)|, i.e. we want to find those X ∈ SL3(Z) such that

Xt

1
1

7

X =

1
1

7

 .

Write D for the diagonal matrix above.

This is actually an easier counting exercise than the one before. For instance, one could notice that the
above equality is equivalent to XtD = DX−1 where X−1 has a simple description in which the entries are
polynomials (as detX = 1), and then solve. This method works best for n = 2, and very quickly gives the
number of solutions. For n ≥ 3, notice first that the (i, i)’th entry of XtDX is

x21i + x22i + 7x23i.

This needs to be equal to the (i, i)’th entry of D, i.e. 1 if i = 1, 2 and 7 if i = 3. This immediately reduces the
number of possible columns that one can have. Indeed, the only possibilities for the first and second columns
of X are

±

1
0
0

 ,±

0
1
0

 ,

whereas the only possibilities for the third column are

±

0
0
1

 .

Hence, there are only 4 × 4 × 2 = 32 possibilities for X that we need to check! Out of these, many of them
are not going to satisfy XtDX. One would then have a full list of elements of O(L)! Out of these, we need to
throw away the ones with determinant ̸= 1. One can check (either by brute force or by a clever argument) that
in fact

|SO(L)| = 8.

However, the mass is 3
16 ! This tells us that there is at least one more class in the genus. Let us try to compute

another example.

By Exercise 7.15, we know that

L2
∼= ⟨1⟩ ⊥ ⟨1⟩ ⊥ ⟨7⟩ ∼= ⟨1⟩ ⊥ ⟨1⟩ ⊥ ⟨−1⟩ ∼= ⟨1⟩ ⊥ ⟨( 0 1

1 0 )⟩

over Z2. In fact, inside V = Q2e1+Q2e2+Q2e3 with Q(e1) = Q(e2) = 1 and Q(e3) = 7, the lattice ⟨1⟩ ⊥ ⟨( 0 1
1 0 )⟩

is given by

M2 := Z2e1 + Z2(e2 + αe3) + Z2
1

2
(e2 − αe3)

where α = 1√
−7

∈ Q2 for some choice of square root (this is possible since −7 ≡ 1 (mod 8)). Thus, it suffices to

find a lattice L′ such that L′
2 = ⟨1⟩ ⊥ ⟨( 0 1

1 0 )⟩ and L′
p = Lp for all p ≥ 3. We mimic the proof of Proposition 8.5.

Since α /∈ Q, so we would like to find a different basis for M2. We use the notation from Proposition 8.5. We
have η1 = e1, η2 = e2 + αe3, and η3 = 1

2e2 −
α
2 e3. We pick y1 = e1, y2 = 2e2, and y3 = 2e3 (all of which lie

inside M2); notice that

[η1, η2, η3] = [y1, y2, y3]

1 0 0
0 1

2
1
4

0 1
2α − 1

4α

 .
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The determinant of this change-of-basis matrix is − 1
4α which has 2-adic valuation 4. We thus want to find

aij ∈ Q such that aij − αij ∈ Z2 and such that

|det(aij) + α
4 |2 < 4.

Notice that most of the αij are rational numbers, so we simply take aij = αij in this case. Since α is a 2-adic
unit, we know that |α− 1|2 < 1. Let’s approximate α by 1. In this case, the corresponding matrix is

(aij) =

1 0 0
0 1

2
1
4

0 1
2 − 1

4


with determinant − 1

4 . Then, we see that

|det(aij)− det(αij)|2 = | − 1
4 + α

4 |2 = | 14 |2|α− 1|2 < | 14 |2 = 4,

so this is what we want to choose. The proof of Proposition 8.5 tells us that we should take

x1 = y1 = e1, x2 =
1

2
y2 +

1

2
y3 = e2 + e3, and x3 =

1

4
y2 −

1

4
y3 =

1

2
e2 −

1

2
e3.

We set J = Ze1+Z(e2+e3)+Z( 12e2−
1
2e3). We thus want to find a lattice L′ such that L′

2 = J2 and L′
p = Lp

for all primes p ≥ 3. Clearly 2J ⊆ L. The proof of Proposition 8.5 tells us that we want to find a basis z1, z2, z3
for V and some constants c1, c2, c3 ∈ Z such that

L = Zz1 + Zz2 + Zz3 and 2J = Zc1z1 + Zc2z2 + Zc3z3.

Thus, we want to find invertible matrices P,Q ∈ GL3(Z) and constants c1, c2, c3 ∈ Z such that

[e1, e2, e3] = [z1, z2, z3]P and [2e1, 2e2 + 2e3, e2 − e3] = [c1z1, c2z2, c3z3]Q.

Writing everything in coordinates with respect to the basis e1, e2, e3, we see that we want to find P,Q ∈ GL3(Z)
such that 1

1
1

 = ZP and

2 0 0
0 2 1
0 2 −1

 = Z

c1 c2
c3

Q.

In particular, Z = P−1 ∈ GL3(Z). By using elementary row and column operations (or, the Smith Normal
Form), one sees that 2 0 0

0 2 1
0 2 −1

 =

1 0 0
0 1 0
0 −1 −1

2
1

4

1 0 0
0 2 1
0 −1 0

 .

Hence c1 = 2, c2 = 1, c3 = 4, and for the basis

z1 := e1, z2 := e2 − e3, and z3 := −e3

we have
L = Zz1 + Zz2 + Zz3 and 2J = Z2z1 + Zz2 + Z4z3.

Hence the proof of Proposition 8.5 tells us that we should take L′ = Zz1 + Z 1
2z2 + Z2z3. The Gram matrix of

L′ with respect to this basis is 1 0 0
0 2 7
0 7 28

 .

We want to calculate |SO(L′)|. Using the same techniques as before, one can check that |SO(L′)| = 16. Since
we now have

m(L)− 1

|SO(L)|
− 1

|SO(L′)|
=

3

16
− 1

8
− 1

16
= 0,

it follows that we have exhausted the genus! Therefore, we have

genL = clsL+ clsL′

where
L′ ∼= ⟨1⟩ ⊥ ⟨( 2 7

7 28 )⟩ .
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Remark 8.31. Of course, one can calculate class representatives directly via SAGE, using the following code.

from sage.quadratic forms.genera.genus import genera

X = Matrix(ZZ, 3, [1, 0, 0, 0, 1, 0, 0, 0, 7])

print(Genus(X).representatives())

SAGE (at least for me) outputs ⟨1⟩ ⊥ ⟨1⟩ ⊥ ⟨7⟩ and ⟨1⟩ ⊥ ⟨( 2 1
1 4 )⟩. One can check fairly easily that ⟨( 2 1

1 4 )⟩ ∼=
⟨( 2 7

7 28 )⟩ over Z, so that the lattice L′ we obtained above is in the same class as the lattice given by SAGE.

9 Siegel-Weil Mass Formula

In this section, we will see how the Siegel-Weil mass formula can answer Q3 from the beginning of the course.
The idea is simple. We will consider generating series for the numbers

rL(n) := {x ∈ L : Q(x) = n}

where L is some full Z-lattice in a positive definite quadratic space over Q (with quadratic form Q). These
generating series turn out to be satisfy very interesting symmetries. Taking advantage of these symmetries, we
can quickly deduce interesting identities.

9.1 Modular Forms

The book [Kil15] is excellent for learning about computational aspects of modular forms, and I think is the best
reference for someone who has never seen modular forms before. A good general reference for modular forms,
especially for half-integer weights, is [Kob93].

We will be concerned with the group SL2(Z) and its subgroups. This group has many important subgroups,
such as:

Γ0(N) := {
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (modN)},

Γ1(N) := {
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (modN), a ≡ d ≡ 1 (modN)},

Γ(N) := {
(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( 1 0

0 1 ) (modN)}.

Notice that SL2(Z) = Γ0(1) = Γ1(1) = Γ(1).

Definition. A congruence subgroup is a subgroup Γ ⊂ SL2(Z) such that Γ ⊇ Γ(N) for some N ≥ 1.

Obviously Γ(N) for all N ∈ N are congruence subgroups. It is also easy to see that Γ0(N) and Γ1(N) are
congruence subgroups as well.

We also need to recall the notion of a Dirichlet character.

Definition. A Dirichlet character is a multiplicative map χ : Z → C such that there exists M ∈ N satisfying

• χ(n) ∈ S1 = {z ∈ C∗ : |z| = 1} for all n ∈ Z with gcd(n,M) = 1,

• χ(n) = 0 for all n ∈ Z with gcd(n,M) ̸= 1, and

• χ(n+M) = χ(n) for all n ∈ Z.

The conductor of χ is the least positive integer M satisfying the above three conditions.

Example 9.1. An example of a Dirichlet character is the trivial character 1 : Z → C, n 7→ 1 (which has conductor
1).

Example 9.2. A family of non-trivial Dirichlet characters are given by

χa(n) :=

{
( an ) if n is odd and gcd(a, n) = 1,

0 otherwise.
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where ( an ) are Jacobi symbols, which generalise Legendre symbols. They are defined as follows: if n = pk1
1 · · · pkr

r

is a prime factorisation, then we set
( an ) = ( a

p1
)k1 · · · ( a

pr
)kr

where (ap ) = [a, p]p are the Legendre symbols. As an example, we have

χ−1(n) :=


1 if n ≡ 1 (mod 4),

−1 if n ≡ −1 (mod 4),

0 if n even.

Consider the upper half plane
H := {z ∈ C : Im(z) > 0}

in C. The group SL2(Z) acts on H by Möbius transformations(
a b
c d

)
· z := az + b

cz + d
.

We can now define a modular form.

Definition. Suppose we are given an integer k ∈ Z, a congruence subgroup Γ, and a Dirichlet character χ with
conductor fχ. Suppose Γ is chosen so that Γ is a subgroup of Γ0(fχ). A modular form of weight k with level Γ
and character (or nebentypus) χ is a holomorphic function f : H → C such that

• (bounded at ∞) f(g · z) is bounded as Im(z) → ∞ for all g ∈ SL2(Z);

• (modularity) for any γ =
(
a b
c d

)
∈ Γ and z ∈ H, we have

f(γ · z) = χ(d)(cz + d)kf(z).

We let Mk(Γ) denote the C-vector space of all modular forms of weight k for Γ.

Suppose that ( 1 1
0 1 ) ∈ Γ; for us, this should always be the case. Then modularity says that f(z + 1) = f(z).

Some complex analysis then implies that we can write

f(z) =

∞∑
n=−∞

ane
2πinz

where an ∈ C and an = 0 for all n sufficiently small. Notice that |e2πinz| = e−2πnIm(z). The bounded at ∞
condition then implies that an = 0 for all n < 0. Hence, we can write

f(z) =
∑
n≥0

ane
2πinz;

this is the Fourier expansion of f .

Example 9.3. An important family of examples are modular forms of weight k ≥ 4 for SL2(Z) are the Eisenstein
series, given by

Ek(z) :=
∑

(m,n)∈Z2,gcd(m,n)=1

1

(mz + n)k
.

Clearly Ek = 0 if k is odd. The Fourier expansion for Ek turns out to be

Ek(z) = 1 + Ck

∑
n≥1

σk−1(n)e
2πinz

for some (actually explicit) constant Ck, where σk−1(n) :=
∑

d|n d
k−1. The first few values of Ck are given

below.

C4 = 204, C6 = −504, C8 = 480, C10 = −264, C12 =
65520

691
, C14 = −24.

Example 9.4. Suppose f ∈Mk(Γ0(N), χ), and for m ∈ N define the function g(z) := f(mz). Then it turns out
that g ∈Mk(Γ0(Nm), χχm).
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Example 9.5. Define

E2(z) = 1− 24
∑
n≥1

σ(n)e2πinz

where σ(n) = σ1(n) =
∑

d|n d is the sum of divisors function of n. It turns out that E2(z) does not converge
absolutely. It turns out that E2 does not satisfy modularity! However, it turns out that

F (z) := E2(z)− 2E2(2z) = −1 + 24e2πiz + 24e4πiz + · · ·

lies in M2(Γ0(2),1).

Example 9.6. Notice that if f ∈ Mk(Γ, χ) and g ∈ Mℓ(Γ
′, χ′) are modular forms, where the weights, levels,

and characters may all be different. Then, one can check that the product fg lies in Mk+ℓ(Γ ∩ Γ′, χχ′). Thus,
multiplying modular forms gives rise to other modular forms.

We also have half-weight modular forms, i.e. where we can take k ∈ 1
2 + Z rather than k ∈ Z. There are

additional complications since we need to take square-roots, and over the complex numbers there’s no ‘good’
choice of square roots. The interested reader should look at [Kob93, Chapter 4] for an introduction to the
theory of half-integer weight modular forms.

The following result explains why modular forms are so easy to compute with.

Proposition 9.7. Mk(Γ, χ) is a finite dimensional complex vector space.

Example 9.8. It is a fact that for k ≥ 4 a positive even integer,

dimCMk

(
SL2(Z),1

)
=

{
⌊k/12⌋ if k ≡ 2 (mod 12),

1 + ⌊k/12⌋ if k ̸≡ 2 (mod 12).

Thus, for k ∈ {4, 6, 8, 10}, every modular form of level SL2(Z) and character 1 is some constant multiple of the
Eisenstein series Ek defined above. For weight 12, M12(SL2(Z),1) is 2-dimensional, spanned by E12 and

∆(z) :=
1

1728
(E4(z)

3 − E6(z)
2) = q − 24q2 + 252q3 − 1472q4 + · · ·

where q := e2πiz. This modular form ∆ is called the discriminant modular form and its coefficients (all of which
are integers!) are the Ramanujan tau function.

Thus, to prove an identity involving modular forms, it suffices to check that ‘enough’ Fourier coefficients
match up. In fact, we have the following explicit result.

Proposition 9.9 (The Sturm Bound). Suppose f ∈Mk(Γ, χ) is a modular form with Fourier expansion given
by

f(z) =
∑
n≥0

ane
2πinz.

Suppose that an = 0 for all integers n with

n ≤ k

12
[SL2(Z) : Γ]

where [SL2(Z) : Γ] is the index of the group Γ. Then, f = 0.

Thus, to check that f = g for modular forms f, g ∈ Mk(Γ, χ), it suffices to check that the first few Fourier
coefficients of f and g are equal.

Exercise 9.10. By computing the first few coefficients of both sides, show that E6E8 = E14.

Exercise 9.11. Notice that E2
6 ∈ M12(SL2(Z),1). This vector space is spanned by E12 and ∆. Find a, b ∈ C

such that E2
6 = aE12 + b∆.
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To actually use the Sturm Bound, one needs to compute the group index. For the important congruence
subgroups given above, we have

[SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
,

[SL2(Z) : Γ1(N)] = N2
∏
p|N

(
1− 1

p2

)
,

[SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− 1

p2

)
.

9.2 Siegel-Weil Mass Formula

Suppose now V is a regular quadratic space over Q of dimension r, and suppose V∞ is positive definite. As V∞
is positive definite, it follows that for any a ∈ Q the set

{v ∈ V : Q(v) = a}

is a finite set, and will be empty whenever a < 0. Suppose now that L is a full lattice in V with n(L) ∈ Z. This
forces Q(L) ⊆ Z≥0. Define

rL(n) := {v ∈ L : Q(v) = n}.

Example 9.12. If f ∈ Z[x1, ..., xr] is a positive definite quadratic form with integer coefficients in r variables,
then taking V = Qn and L = Zn, we see that rL(n) counts the number of integer solutions (a1, ..., ar) such that

f(a1, ..., ar) = n.

In this set up, we often denote rL(n) by rf (n). For instance, taking f = x21 + · · ·+ x2r, we see that rf (n) simply
counts the number of ways of writing n as the sum of r squares.

Given a lattice L, we consider the generating function

ΘL =
∑
n≥0

rL(n)q
n =

∑
v∈L

qQ(v).

This is an example of a theta function. As before, if we are just given a quadratic form f ∈ Z[x1, ..., xr], we
may take V = Qr equipped with this quadratic form f and take L = Zr. In this case, the corresponding theta
function is denoted by Θf . We have the following result when we view ΘL as a complex valued function.

Proposition 9.13 ([Iwa97, Theorem 10.9]). Suppose L is a positive definite lattice, and set D = discL.
Consider the function

ΘL(z) :=
∑
n≥0

rL(n)e
πinz.

• If r is even, then ΘL ∈Mr/2(Γ0(4D), χ(−1)r/24D).

• If r is odd, then ΘL ∈Mr/2(Γ0(4D), χ4D)1.

It can be checked that
Mr/2(Γ0(4D), χ±4D) ⊂Mr/2(Γ1(4D),1).

With this preparation, we are now able to state the Siegel-Weil Mass Formula.

Theorem 9.14 (Siegel-Weil Mass Formula). Let V be a positive definite quadratic space over Q, and suppose
L is a full lattice in V with n(L) ∈ Z. Let L1 = L, ..., Lm be a set of class representatives of classes in the genus
of L, i.e. suppose

gen+L = cls+L1 ⊔ cls+L2 ⊔ · · · ⊔ cls+Lm.

1Since we have not discussed the case of modular forms of half-integer weight in great detail, this simplified statement suffices.
It is however not quite accurate since we would need to talk about multiplier systems.
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Then,

EgenL(z) :=
1

m(L)

m∑
i=1

1

|SO(L)|
ΘLi

(z)

is a certain normalised Siegel Eisenstein series of weight r/2.

The Siegel Eisenstein series is in fact explicitly determined just from genL. However, its definition requires
integrating over certain p-adic groups, and is beyond the scope of our course. It turns out however that looking
just at the 0th Fourier coefficient of both sides, we immediately get the Smith-Minkowski-Siegel mass formula.

Given the finite dimensionality of the space of modular forms, one can very quickly write down many inter-
esting identities involving quadratic forms. See the examples given below and in the exercises.

Example 9.15. Let us find out the number of ways there are of writing a positive integer as the sum of 8 squares.
In this case, our quadratic form f =

∑8
i=1 x

2
i has discriminant 1, and so Θf ∈ M4(Γ0(4)). The Sturm bound

for this space is
4

12
· 4
(
1 +

1

2

)
= 2.

Now, we know that E4 ∈M4(SL2(Z)) ⊆M2(Γ0(4)), and the first few coefficients are

1 + 204q + 204 · (1 + 23)q2 + · · · ,

where we write q = e2πiz. Another example of a modular form in this space is

E4(2z) ∈M4(Γ0(2)) ⊆M4(Γ0(4)).

Its first few coefficients are
E4(2z) = 1 + 204q2 + · · · .

A third modular form in this space is
E4(4z) ∈M4(Γ0(4)),

with first few coefficients
E4(4z) = 1 + 204q4 + · · · .

It is easy to see that these three modular forms are linearly independent; in fact, their first three coefficients
form the invertible matrix  1 1 1

204 0 0
204 · 9 204 0


and so for any f ∈M4(Γ0(4)) with Fourier expansion f = a0 + a1q + a2q

2 + · · · , we can find unique a, b, c ∈ C
such that

a0 + a1q + a2q
2 = a(1 + 204q + 204 · 9q2) + b(1 + 204q2) + c(1).

The Sturm bound being 2, we immediately get the identity f(z) = aE4(z) + bE4(2z) + cE4(4z). Hence, these
three modular forms are a basis for M4(Γ0(4))!

Now, a simple counting argument shows that

Θf (z) = 1 + 16q + 112q2 + · · · .

Setting Θf = aE4+bE4(2z)+cE4(4z) and looking at the first 3 coefficients, we may solve for a, b, and c. Doing
this yields

a =
16

204
, b = − 32

204
, and c =

220

204
.

Hence, we have

Θf (z) =
1

204
(16E4(z)− 32E4(2z) + 220E4(4z)).

Equating coefficients shows that the number of writing n ≥ 1 as the sum of 8 squares is

16σ3(n)− 32σ3(
n
2 ) + 220σ3(

n
4 )

where we say that σ3(x) = 0 if x /∈ Z.
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10 The Spinor Genus

In this section, we give a refinement of the genus. This involves the construction of the spinor norm (and thus
the spin group). The proof that the spinor norm is even well-defined is not at all trivial, and requires some work
(see the proof of Proposition 10.8). Once we have the spinor norm, we can define the spinor genus. It turns out
that the Siegel-Weil Mass Formula generalises to spinor genera. This generalisation gives a whole host of new
formulae that the Siegel-Weil Mass Formula as given previously fails to provide.

10.1 Clifford Algebras

Let V be a regular n-ary quadratic space over a field k, with associated symmetric bilinear form B and quadratic
form Q.

Definition. A k-algebra A is said to be compatible with V if there exists an injective k-linear map ι : V ↪→ A
such that

ι(x)2 = Q(x)1A

for all x ∈ V .

If A is compatible with V , we often identify V as a k-subspace of A. Thus, a compatible A-algebra simply
gives a way of multiplying vectors in V that encodes the quadratic space structure of V . Note however that the
product of two vectors in V need not be another vector of V .

One can check easily that
xy + yx = 2B(x, y)1A.

In particular, xy = −yx if and only if x and y are orthogonal vectors in V .

Lemma 10.1. Let A be compatible with V , and let x ∈ V . Then x is invertible in A if and only if x is
anisotropic.

Proof. If x is invertible with inverse x−1 ∈ A, then x2 = Q(x)1A implies

Q(x)x−1 = x.

Since x cannot be zero, we must have Q(x) ̸= 0. On the other hand, if Q(x) ̸= 0, then one checks that 1
Q(x)x is

an inverse to x.

Definition. The Clifford algebra C = C(V ) of V is a k-algebra compatible with V with injection ι : V ↪→ C
satisfying the following universal property: If A is any other k-algebra compatible with V with injection i :
V ↪→ A, then there exists a unique k-algebra homomorphism φ : C → A such that φ ◦ i = ι.

In other words, the Clifford algebra of V is the initial object (if it exists) in the category of k-algebras
compatible with V .

As with any universal property, uniqueness is guaranteed almost immediately.

Lemma 10.2. The Clifford algebra, if it exists, is unique up to unique isomorphism.

Proof. Let C and C ′ be Clifford algbras of V ; we need to show they are unique. By the universal property,
there exist unique k-algebra homomorphisms φ : C → C ′ and ψ : C ′ → C that are the identity on V . However,
notice that ψ ◦φ : C → C is a k-algebra homomorphism from a Clifford algebra of V to a k-algebra compatible
with V , and so must be unique by the universal property. However, the identity idC : C → C is also one such
k-algebra homomorphism. Thus ψ ◦ φ = idC . Similarly φ ◦ ψ = idC′ .

Existence is slightly less trivial.

Theorem 10.3. Every regular quadratic space V has a Clifford algebra.
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Proof. Fix an orthogonal basis
V = kx1 ⊥ · · · kxn.

Let C be the 2n dimensional k-vector space spanned by basis vectors xv indexed by elements v = (v1, ..., vn) ∈ Fn
2 .

We define the multiplicative structure on C by

xv · xw :=

 ∏
1≤j<i≤n

(−1)viwj

( n∏
i=1

Q(xi)
viwi

)
xv+w,

and extended to all of C by linearity. Some tedious computation shows that C is indeed an associative k-
algebra with identity x0. If ei denotes the i’th standard basis vector of Fn

2 (i.e. ei has a 1 in the i’th entry and
0 elsewhere), then one easily checks that the injection

ι : V ↪→ C, xi 7→ xei

makes C a k-algebra compatible with V . We claim that C satisfies the universal property of the Clifford algebra
over V .

Let A be any other k-algebra compatible with V , and suppose ι′ : V ↪→ A is the injection. We then have a
map

φ : C → A

given by

φ(xv) =

n∏
i=1

(
ι′(xi)

)vi
(for vi ∈ {0, 1}) and extended by linearity. One sees easily that this is a k-algebra homomorphism, and that φ
satisfies the universal property of Clifford algebras.

By uniqueness, we see that the above construction is independent (up to isomorphism) of the basis chosen
for V . It is thus an honest invariant of V .

Corollary 10.3.1. The Clifford algebra of V is a 2n-dimensional vector space over k, and as a k-algebra is
generated by V .

Let us see what the Clifford algebra C of V gets us. Notice that every element of C is a finite sum of terms
of the form

y1 · · · yr
for some y1, ..., yr ∈ V . Let C+ = C+(V ) (resp. C− = C−(V )) denote the k-vector subspace of C spanned by
elements of the above form with r even (resp. r odd). Then it is easy to see that C+ is a subalgebra of C and
dimC+ = 2n−1 = dimC−. Note that C− is not a subalgebra of C since 1C /∈ C−.

Lemma 10.4. Let a ∈ C+. If a commutes with every element of V , then a ∈ k1C .

Proof. Fix an orthogonal basis V = kx1 ⊥ · · · ⊥ kxn. Then, in the notation of the proof of Theorem 10.3, we
can write

a =
∑
v∈S

cv(xv)

where S is a finite subset of Fn
2 such that v has an even number of non-zero entries for all v ∈ S. A small

computation shows that
xjxv = (−1)vjxvxj

for all 1 ≤ j ≤ n and all v ∈ S. Fix some v0 ∈ S, and let the i’th coordinate of v0 be non-zero. Since a
commutes with xi, we havecv0

xv0
+
∑
v∈S

cvxv

xi = axi = xia = xi

cv0
xv0

+
∑
v∈S

cvxv


=

−cv0
xv0

+
∑
v∈S

(−1)vicvxv

xi.
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It follows that cv0
= −cv0

. Hence, we see that cv = 0 whenever any entry of v is non-zero. Since x0 = 1C , it
follows that a ∈ k1C .

The same proof idea can be used to prove the following.

Lemma 10.5. Let x ∈ C−. If x anti-commutes with every element of V (i.e. xy = −yx for all y ∈ V ), then
a = 0.

Exercise 10.6. Prove Lemma 10.5.

Lemma 10.7. Let x, y ∈ V and suppose x is anisotropic. Then, τxy = −xyx−1 = −x−1yx, viewed as elements
of the Clifford algebra C of V .

Proof. Recall that τxy = y − 2B(x,y)
Q(x) x. However, we have xy + yx = 2B(x, y)1C and x−1 = 1

Q(x)x. Hence,

τxy = y − (xy + yx)x−1 = −xyx−1

= y − x−1(xy + yx) = −x−1yx,

as required.

For R and S ring, recall that an anti-homomorphism φ : R→ S is a k-linear map such that φ(xy) = φ(y)φ(x).

Lemma-Definition. If C is the Clifford algebra of a regular quadratic space V , then there exists exactly one
algebra anti-isomorphism C → C inducing the identity on V .

This anti-isomorphism turns out to be an involution, and is called the canonical involution, and is denoted
by x 7→ x. The canonical involution fixes 1C .

Proof. Consider the opposite algebra Cop; it has the same underlying vector space structure as C but has a
different multiplicative structure, given by

x ∗ y := yx.

One can check that Cop is still a Clifford algebra over C and so there exists a unique isomorphism C → Cop.
However, an anti-homomorphism R → S is the same as a map R → Sop. Hence, there can be at most one
anti-isomorphism C → C.

It remains to construct an anti-isomorphism C → C. Fix a basis x1, ..., xn, so that C is spanned by xv11 · · ·xvnn
for vi ∈ {0, 1}. We define

xv11 · · ·xvnn = xvnn · · ·xv11 = (−1)
∑

1≤i<j≤n vivjxv1
1 · · ·xvnn .

This is clearly an anti-isomorphism, and so must be the unique one we were looking for. That it is an involution
and it fixes 1C is obvious from the definition.

These lemmas allow us to prove some non-trivial facts about quadratic spaces.

Proposition 10.8. Suppose V is a regular quadratic space and τu1
, τu2

, ..., τur
are reflections such that

τu1 · · · τur

is the identity on V . Then Q(u1) · · ·Q(ur) ∈ (k∗)2.

Proof. Applying Lemma 10.7 r times, we also see that τu1
· · · τur

= 1V implies that

(u1 · · ·ur)x(u1 · · ·ur)−1 = x

for all x ∈ V . Thus (u1 · · ·ur) ∈ C commutes with every element of V . On the other hand, r is even since
det 1V = 1 but det τx = −1 for all anisotropic x. Lemma 10.4 then implies that u1 · · ·ur = α1C for some α ∈ k∗.
Using the properties of the canonical involution of C, we have

α1C = α1C = u1 · · ·ur = ur · · ·u1 = ur · · ·u1.
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We thus have
Q(u1) · · ·Q(ur)1C = (u1 · · ·ur)(ur · · ·u1) = α21C ,

and the result follows.

10.2 The Spinor Norm and the Spin Group

Let M = M(V ) be the set of all invertible u ∈ C+(V ) such that uxu−1 ∈ V for all x ∈ V . Given u ∈ M , we
have the map Tu : V → V, x 7→ uxu−1. It is a k-linear automorphism of C(V ) satisfying Tu(V ) ⊆ V . Since V is
finite dimensional over k, we must have Tu(V ) = V because of dimension reasons. In particular, for any x ∈ V ,
there exists y ∈ V such that uyu−1 = x, and so u−1xu = y ∈ V . Hence u−1 ∈ M . Since uv ∈ M if u, v ∈ M ,
M is a subgroup of C+(V )∗. We clearly have k∗1C ⊆M .

Definition. We call M(V ) the Clifford group of V .

Theorem 10.9. The map u 7→ Tu, induces a surjective group homomorphism M(V ) → SO(V ) with kernel
k∗1C .

Proof. It is easy to see that uv ∈M if u, v ∈M . Consider

We have already shown that Tu ∈ GL(V ). We check that it is an isometry, i.e. Tu ∈ O(V ). Indeed, notice
that

Q(uxu−1)1C = (uxu−1)2 = ux2u−1 = Q(x)u1Cu
−1 = Q(x)1C .

The identity Tuv = TuTv is a straightforward computation. We have thus defined a group homomorphism

M → O(V ), u 7→ Tu.

The statement of the theorem is equivalent to showing that this group homomorphism has image SO(V ) and
kernel k∗1C . That the kernel is k∗1C follows immediately from Lemma 10.4.

Suppose σ ∈ SO(V ). Since O(V ) is generated by reflections, there exists anisotropic u1, ..., ur ∈ V such that

σ = τu1
· · · τur

.

Since σ ∈ SO(V ), r must be even. By repeated applications of Lemma 10.7, one can now check that u =
u1 · · ·ur ∈M satisfies σ = Tu, and so SO(V ) lies in the image of u 7→ Tu.

Finally, suppose there exists u ∈M such that Tu /∈ SO(V ). Then

Tu = τu1 · · · τur

for anisotropic u1, ..., ur ∈ V and r odd. Set v = u1 · · ·ur ∈ C−(V ). Then, repeated applications of Lemma 10.7
implies that

vxv−1 = −τu1 · · · τurx = −Tux = −uxu−1.

Then w = u−1v ∈ C−(V ) satisfies wx = −xw for all x ∈ V . By Lemma 10.5, it follows that w = 0, which is
impossible.

Corollary 10.9.1. If u ∈ C+(V ) is invertible and uxu−1 ∈ V for all x ∈ V , then there exists v1, ..., vr ∈ V
such that u = v1 · · · vr where r is even. Furthermore, uu ∈ k∗1C .

Proof. The existence of v1, ..., vr is immediate from the proof of the above theorem. We then have

uu = (v1 · · · vr)(vr · · · v1) = Q(v1) · · ·Q(vr)1C .

We now define a map θ : SO(V ) → k∗/(k∗)2. Given any σ ∈ SO(V ), we write σ = Tu for invertible
u ∈ C+(V ). By the corollary. we have uu = α1C for some α ∈ k∗. If we replace u with λu, then α gets replaced
by αλ2. Hence, we have a well-defined map

θ : SO(V ) → k∗/(k∗)2, Tu 7→ (uu)(k∗)2.
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More concretely, given σ ∈ SO(V ), we write σ = τx1 · · · τxr , and set

θ(σ) = Q(x1) · · ·Q(xr)(k
∗)2 ∈ k∗/(k∗)2.

That this is well-defined (i.e. independent of the choice of x1, ..., xr) follows from Proposition 10.8. In fact, this
concrete description shows that θ actually extends to a map θ : O(V ) → k∗/(k∗)2 such that θ(τx) = Q(x)(k∗)2.

Exercise 10.10. For V a regular quadratic space, we have θ(−1V ) = discV ∈ k∗/(k∗)2.

However, we will only really care about this map restricted to SO(V ).

Definition. The group homomorphism θ : SO(V ) → k∗/(k∗)2 is called the spinor norm. The kernel of θ is
denoted by SO′(V ).

Exercise 10.11. If V is regular isotropic, then θ is surjective.

The group SO′(V ) has an interesting double cover, the spin group.

Definition. The spin group Spin(V ) of a quadratic space V is the subgroup of M(V ) consisting of those
u ∈M(V ) such that uu = 1C .

Lemma 10.12. The map u 7→ Tu gives a surjective group homomorphism Spin(V ) → SO′(V ), with kernel
{±1}.

The spin group is very important in the theory of algebraic groups (and the theory of Lie groups). It has
important applications in physics as well.

Example 10.13. Suppose V is a quadratic space over k, where k is algebraically closed (say k = C). Then
k∗/(k∗)2 is the trivial group and so the spinor norm is trivial. It follows that SO′(V ) = SO(V ).

Example 10.14. Suppose V is a regular quadratic space over R. If V is positive (or negative) definite, then the
image of θ is R>0 = (R∗)2, and so θ is the trivial map. Thus SO′(V ) = SO(V ) in this case as well. It turns out
that, for V positive (or negative) definite, Spin(V ) is a simply connected Lie group that forms a double cover
of SO(V ). It is precisely this fact that makes it extremely important in Lie theory and physics.

However, if V is indefinite, then the spinor norm is surjective, and so SO′(V ) is an index 2 subgroup of
SO(V ).

Remark 10.15 (for those who know about algebraic groups and Galois cohomology). As with O(V ) and SO(V ),
the functor R 7→ Spin(V ⊗k R) makes Spin(V ) an algebraic group. Let Spin(V ) denote the corresponding
algebraic group.

Over any field not of characteristic 2, Spin(V ) is a simply connected double cover of the algebraic group
SO(V ), i.e. we have an exact sequence

1 → µ2 → Spin(V ) → SO(V ) → 1

where µ2 is the algebraic group of second roots of unity. Taking cohomology, and again assuming chark ̸= 2,
we have

1 → {±1} → Spin(V ) → SO(V ) → H1(k, µ2).

However, H1(k, µ2) ∼= k∗/(k∗)2. It turns out that this connecting homomorphism

SO(V ) → H1(k, µ2)

is precisely the spinor norm map
θ : SO(V ) → k∗/(k∗)2.

The spin group, the spinor norm, and the group SO′(V ) all play a key role in the study of quadratic spaces
over the integers. In fact, they provide important obstructions to the local-global principle which we will
encounter when we study quadratic forms over Z.
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10.3 Spinor Genus

Now suppose V is a quadratic space over the rationals. For every place v of Q, we have the spinor kernel
SO′(Vv) ⊂ SO(Vv) consisting of those rotations with trivial spinor norm. We then have the group

SO′
A(V ) := {(σv) ∈ SOA(V ) : σv ∈ SO′(Vv) for all places v}.

Mimicking the definition of the genus, we have the following.

Definition. The spinor genus spnL of a full lattice L is the set of all full lattices K such that there exists
σ ∈ O(V ) and Σp ∈ SO′(Vp) for every prime p such that

Kp = σΣpLp

for all primes p. The proper spinor genus spn+L is the subset of such K where we may choose σ ∈ SO(V ).

In other words,

spnL := {σΣL : σ ∈ O(V ),Σ ∈ SO′
A(V )},

spn+L := {σΣL : σ ∈ SO(V ),Σ ∈ SO′
A(V )}.

The containment
O(V ) ⊆ O(V )SO′

A(V ) ⊆ OA(V )

implies that each genus is partitioned into spinor genera, and each spinor genus is partitioned into classes. By
the orbit-stabiliser theorem again, we know that spn+L is in bijection with SOA(L)\SO(V )SO′

A(V ).

Remark 10.16. Since O(V ) ̸⊂ SO′
A(V ) in general, in order to make sure that clsL ⊂ spnL we consider the

O(V )SO′
A(V ) orbit of L instead of just the SO′

A(V ) orbit.

Exercise 10.17. If Σ is an element of SOA(V ), show that Σ(spnL) = spn(ΣL) and Σ(spn+L) = spn+(ΣL).

There is a very important theorem due to Eichler.

Theorem 10.18 (Eichler). If V is a regular quadratic space such that dimV ≥ 3 and V∞ is indefinite, then
for any full lattice L inside V the spinor genus coincides with the class.

There is an explicit formula for the number of spinor genera in a genus. However, in order to write down this
formula, we need to take a brief detour into the world of adéles.

10.4 Idèles and Adèles

A very useful notion when dealing with global properties is the ring of adèles. We stick to being over Q.

Definition. The ring of finite adèles A∞
Q is the subring of the (infinite) product ring

AQ ⊂
∏
p

Qp

(the product being over all primes p of Q) consisting of those elements (ap) ∈
∏

p Qp such that ap ∈ Zp for
almost all finite primes p.

Definition. The ring of adèles AQ is the product ring R× A∞
Q .

Addition and multiplication happens component wise. We can endow
∏

p Qp with the product topology,
in which case A∞

Q is endowed with the subspace topology. Thus AQ also can be equipped with the product
topology. Under this topology, AQ and A∞

Q are locally compact Hausdorff topological rings. Notice that Q
embeds into AQ ‘diagonally’, i.e.

Q ↪→ AQ, x 7→ (x)v,

since any rational number is a p-adic integer for all primes p not dividing the denominator. We usually identify
Q with its image in AQ.

Definition. The subring of principal adèles is the image of Q in AQ under the diagonal embedding.

74



Under this embedding, it turns out that Q is a discrete subset of AQ, that Q is a dense subset of A∞
Q (by

the weak approximation theorem), and moreover the quotient space Q\AQ is compact. However, we shall not
really need the topology on AQ in what follows.

We are not doing anything special! Specifying an element of AQ is the same as specifying a real number x∞
and a p-adic number xp ∈ Qp for all primes p, satisfying the simple condition that xp ∈ Zp for all but finitely
many primes p.

Set Ẑ =
∏

p Zp, the product being over all (finite) primes p. This is again a ring under component-wise
addition and multiplication, and is also endowed with a topology, the product topology. We have the diagonal
embedding Z ↪→ Ẑ, in which Z is dense in Ẑ (this is again weak approximation). Clearly, Ẑ ⊂ A∞

Q and

R× Ẑ ⊂ AQ. It turns out that

A∞
Q

∼= Q⊗Z Ẑ, Q ∩ R× Ẑ = Z, and AQ = Q+ R× Ẑ.

Remark 10.19. The proofs of all these facts is actually not very hard, and follows the proofs given below very
closely. Proofs may be found in pretty much any book on algebraic number theory.

In what follows however, we are most interested in the group of units of the ring AQ.

Definition. The group of idèles is the group of units A∗
Q of AQ.

Equivalently, A∗
Q consists of those elements (xv) ∈

∏
v Q∗

p such that xp ∈ Z∗
p for almost all finite primes p. As

before, we endow
∏

v Q∗
p with the product topology, and endow A∗

Q with the subspace topology. In this way,
A∗

Q is a locally compact Hausdorff topological group.

Remark 10.20. WARNING: the topology so induced on A∗
Q does not coincide with the subspace topology

induced by A∗
Q ⊂ AQ.

We have the diagonal embedding Q∗ ↪→ A∗
Q as usual. These are the principal idèles. Notice that we also have

Ẑ∗ :=
∏
p

Z∗
p,

endowed with the product topology.

Lemma 10.21. A∗
Q = Q∗(R∗ × Ẑ∗). In other words, for any idèle (xv) ∈ A∗

Q, there exists a ∈ Q, y∞ ∈ R∗, and
yp ∈ Z∗

p for all primes p such that

x∞ = ay∞, and xp = ayp for all primes p.

Proof. By definition of an idèle, we have xp ∈ Z∗
p for all primes p /∈ S, for some finite set S of (finite) primes.

Set

a =
∏
p∈S

p−ordpxp and yp =

{
xpp

−ordpxp if p ∈ S,

xpa
−1 if p /∈ S or p = ∞.

Since a ∈ Z∗
p for all p /∈ S, we see that yp = xpa

−1 ∈ Z∗
p for all p /∈ S. For all p ∈ S, we have by definition that

|xpp−ordpxp |p = 1, and so yp ∈ Z∗
p as well. Hence y = (yv) ∈ R∗ × Ẑ ⊂ A∗

Q. By construction, notice that x = ay
as required.

Lemma 10.22. (R∗ × Ẑ∗) ∩Q∗ = {±1}

Proof. Consider any principal idèle x = (x)p ∈ Q∩ (R∗ × Ẑ∗). Since x ∈ Ẑ∗, we have that x ∈ Z∗
p for all primes

p. If x /∈ {±1}, then there exists some prime p (dividing either the numerator or denominator of x) such that
|x|p ̸= 1, and so x /∈ Z∗

p for this prime p. It follows that x ∈ {±1}, and the lemma follows.

The previous two lemmas imply the following.
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Corollary 10.22.1. We have an internal direct product A∗
Q = Q∗(R>0 × Ẑ∗). In other words, for any idèle

x = (xv), there exists a unique y∞ ∈ R>0, a unique y = (yp) ∈ Ẑ∗, and a unique a ∈ Q∗ such that x∞ = ay∞
and xp = ayp.

Again, we are not doing anything special! Specifying an element of A∗
Q is the same as specifying a non-zero

real number x∞ (which, by the corollary, we may always assume positive) and a non-zero p-adic number xp ∈ Q∗
p

for all primes p, satisfying the simple condition that xp ∈ Z∗
p for all but finitely many primes p.

10.5 Number of Spinor Genera

We also see that the set of all spinor genera in the genus of L is in bijection with

SO(V )SOA(L)SO
′
A(V )\SOA(V ).

Since there are only finitely many classes in a genus, and each spinor genus is a disjoint union of classes, it
follows that there are only finiely many spinor genera in a genus. Moreover, the number of such spinor genera
is the group index

(SOA(V ) : SO(V )SOA(L)SO
′
A(V )) .

Proposition 10.23. The number of spinor genera in a genus is always a power of 2.

Proof Sketch. Consider the homomorphism θ : SOA(V ) → A∗
Q/(A∗

Q)
2, whose kernel is precisely SO′

A(V ). Since

A∗
Q/(A∗

Q)
2 is a pure 2-torsion group, it follows that SOA(V )/SO′

A(V ) is a pure 2-torsion group. This implies
that the group index

(SOA(V ) : SO(V )SOA(L)SO
′
A(V ))

is a power of 2.

In practice however, it is hard to compute this index, even if we know that it is a power of 2. We thus want
to find an easier number to compute. To do this, we introduce some notation.

θ(V ) :=
⋃

S∈θ(SO(V ))

S = {a ∈ Q∗ : a(Q∗)2 ∈ θ(SO(V ))} ⊂ Q∗

θ(L) :=
⋃

S∈θ(SO(L))

S = {a ∈ Q∗ : a(Q∗)2 ∈ θ(SO(L))} ⊂ Q∗

θ(Vp) :=
⋃

S∈θ(SO(Vp))

S = {a ∈ Q∗
p : a(Q∗

p)
2 ∈ θ(SO(Vp))} ⊂ Q∗

p

θ(Lp) :=
⋃

S∈θ(SO(Lp))

S = {a ∈ Q∗
p : a(Q∗

p)
2 ∈ θ(SO(Lp))} ⊂ Q∗

p

Via the embedding Q∗ ↪→ A∗
Q, we can view θ(V ) (and θ(L)) as subgroups of A∗

Q. In many cases, we know what
these groups are!

Lemma 10.24. If V is a regular quadratic space with dimV ≥ 3, then the spinor norm (restricted to SO(Vp))
is surjective for any prime p. In other words, θ(Vp) = Q∗

p for all primes p.

Proof. For dimVp ≥ 4, Vp is universal, and so there exists a symmetry with any pre-assigned spinor norm. It
follows that the spinor norm is surjective. We may thus suppose that V is ternary. Now, Vp represents α if
and only if Vp ⊥ ⟨−α⟩ is isotropic. By Proposition 4.46, if disc(V ⊥ ⟨−α⟩) ̸= (K∗)2, then the space cannot
be anisotropic, and so V represents α. Now, if discV ⊆ Z∗

p(Q∗
p)

2, then V represents all prime elements and at
least one unit. However every element of Q∗

p can be written as the product of exactly two such elements times
a square. Hence, it follows that θ is surjective. A similar argument works for discV ⊆ pZ∗

p(Q∗
p)

2.

Lemma 10.25. Suppose p is an odd prime such that Lp is a modular lattice with rankL ≥ 2. Then θ(Lp) =
Z∗
p(Q∗

p)
2.
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Proof. By suitably scaling Q, we may suppose that Lp is unimodular. Take any reflection τu ∈ O(Lp), where u is
a maximal anisotropic vector of Lp. Lemma 7.3 implies that B(u, L) ⊆ Q(u)Zp. However, as L is unimodular,
Proposition 6.29 says that B(u, L) = OK . Thus Zp ⊆ Q(u)Zp. However, sL = Zp and so Q(u)Zp ⊆ Zp.
Hence Q(u)Zp = Zp and so Q(u) ∈ Z∗

p. We thus have θ(τu) ∈ Z∗
p(Q∗

p)
2 for any τu ∈ O(Lp), and hence that

θ(Lp) ⊆ Z∗
p(Q∗

p)
2. On the other hand, by Corollary 7.9.3 we can find u ∈ Lp such that Q(u) is any unit we

want, and one can check that τu ∈ O(Lp). Hence θ : O(Lp) → Z∗
p(Q∗

p)
2/(Q∗

p)
2 is surjective, and the result thus

follows.

Lemma 10.26. Suppose V is a regular quadratic space over Q with dimV ≥ 3. Then,

θ(V ) =

{
Q>0 if V∞ positive or negative definite,

Q∗ if V∞ indefinite.

Proof. If V∞ is positive or negative definite, then Q(u) must have the same sign as u ∈ V runs through
anisotropic vectors, which forces the product Q(u1)Q(u2) · · ·Q(u2r) to be positive. Hence, we see that θ(V ) ⊆
Q>0 if V∞ is positive or negative definite.

We now want to show equality. Pick any a ∈ Q∗, and suppose that a > 0 if V∞ is definite. First suppose
dimV ≥ 4. Pick an arbitrary non-zero element b ∈ Q(V ). Then ab ∈ Q(V∞). For all finite primes, we know
by Corollary 4.46.1 that ab ∈ Q(Vp). Hence V represents ab for all p ≤ ∞. The Hasse-Minkowski Theorem
then implies that ab ∈ Q(V ). Thus, we can find u, v ∈ V such that Q(u) = ab and Q(v) = b. It follows that
θ(τuτv) = ab2(Q∗)2 = a(Q∗)2 as required.

Now suppose dimV = 3. We may scale the quadratic form so that discV = 1, so that V∞ is either indefinite
or positive definite. Let S be the set of all (finite) primes p such that Vp is anisotropic; recall that this is a finite
set of primes as a consequence of Lemma 4.44. As a consequence of weak approximation for Q, or alternatively
by an application of Lemma 5.9, we may find b ∈ Q such that

• b > 0 if V∞ is positive definite (otherwise no condition on the sign of b)

• −b,−ab /∈ (Q∗
p)

2 for all p ∈ S.

Notice that (⟨−b⟩ ⊥ V )p is isotropic for all p /∈ S since Vp is itself isotropic. On the other hand, disc(⟨−b⟩ ⊥
Vp) = −b(Q∗

p)
2 ̸= (Q∗

p)
2 for p ∈ S. Since Proposition 4.46 tells us that any regular anisotropic quadratic space

over Qp must have discriminant (Q∗
p)

2, we see that ⟨−b⟩ ⊥ Vp is isotropic for all p ∈ S. Hence ⟨−b⟩ ⊥ V is
isotropic at all primes p and at ∞, and so by Hasse-Minkowski we know that ⟨−b⟩ ⊥ V is isotropic over Q.
This implies that b ∈ Q(V ). The exact same argument but with b replaced by ab shows also that ab ∈ Q(V ).
It then follows that a ∈ θ(V ).

We are now in a position to write down the number of spinor genera in a genus.

Proposition 10.27. For a full lattice L in V , the number of proper spinor genera in genL divides[
A∗

Q : θ(V )

(
R×

∏
p

θ(Lp)

)]
.

If dimV ≥ 3, then we have equality.

Proof. Given that the identity has trivial spinor norm, we know that (Q∗
p)

2 ∈ θ(SO(Lp)) (or equivalently that
(Q∗

p)
2 ⊆ θ(Lp)), and thus that

(A∗
Q)

2 ⊆

(
R×

∏
p

θ(Lp)

)
⊆ θ(V )

(
R×

∏
p

θ(Lp)

)
.

This implies the existence of the following quotient map

Π : A∗
Q/(A∗

Q)
2 → A∗

Q

/
θ(V )

(
R×

∏
p

θ(Lp)

)
.
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We can also define the map
Θ : SOA(V ) → A∗

Q/(A∗
Q)

2, (Σp) 7→
(
θ(Σp)

)
;

that this is well-defined (i.e. θ(Σp) is a unit for almost all p) follows from Lemma 10.25. We thus have a group
homomorphism

Φ := Π ◦Θ : SOA(V ) → A∗
Q

/
θ(V )

(
R×

∏
p

θ(Lp)

)
.

We now compute the kernel of Φ. We have Θ(SO(V )) ⊂ kerΠ due to the presence of θ(V ) in the quotient,
so that SO(V ) ⊂ kerΦ. Similarly SOA(L) ⊂ kerΦ. We also have SO′

A(V ) ⊂ kerΘ ⊂ kerΦ. Thus

SO(V )SOA(L)SO
′
A(V ) ⊆ kerΦ.

Suppose on the other hand that Φ(Σ) is trivial. Write Θ(Σ) =
(
ip(Q∗

p)
2
)
; by our choice of Σ we must have

ip(Q∗
p)

2 ⊂ θ(V )θ(Lp) for all primes p. We can thus write ip = ajp for some a ∈ θ(V ) and some jp ∈ θ(Lp),
for all primes p. Pick σ ∈ SO(V ) with θ(SO(V )) = a(Q∗)2, and for each p pick Λp ∈ SO(Lp) such that
θ(Λp) = jp(Q∗

p)
2. Setting Λ∞ to be the identity, we thus have a well-defined element Λ = (Λp)p ∈ SOA(L).

Consider Σ′ := σ−1Λ−1Σ ∈ SOA(V ). By our choice of Λ and σ, we see that θ(Σ′
p) = (Q∗

p)
2 for all primes p, and

so Σ′
p ∈ SO′(Vp). Thus Σ

′ ∈ SO′
A(V ). Hence, we see that

Σ = σΛΣ′ ∈ SO(V )SOA(L)SO
′
A(V ).

Hence, kerΦ = SO(V )SOA(L)SO
′
A(V ) as required. In particular, we have an injection

SOA(V )/SO(V )SOA(L)SO
′
A(V ) ↪→ A∗

Q

/
θ(V )

(
R×

∏
p

θ(Lp)

)
which implies the first claim about divisibility.

To prove equality for dimV ≥ 3, we just need to show that Φ is surjective in this case. Consider any

i = (ip) ∈ A∗
Q. Since we only care about the coset i ·θ(V )

(
R×

∏
p θ(Lp)

)
, we may as well suppose that i∞ = 1.

Set Σ∞ = 1. Lemma 10.24 says that as dimV ≥ 3, the spinor norm θ : SO(Vp) → Q∗
p/(Q∗

p)
2 is surjective for all

primes p, i.e. that θ(Vp) = Q∗
p. We can thus pick Σp ∈ SO(Vp) such that ip ∈ θ(Σp) for all primes p. Moreover,

Lemma 10.25 says that θ(Lp) = Z∗
p(Q∗

p)
2 for almost all primes p. Since ip ∈ Z∗

p for almost all primes p as well,
we can pick the above Σp so that Σp ∈ SO(Lp) for almost all primes p. This implies that Σ = (Σp) ∈ SOA(V ),
and it isn’t hard to check that Φ(Σ) = i. Therefore, Φ is surjective for dimV ≥ 3.

10.6 A Generalisation of Siegel-Weil

We now give a generalisation of the Siegel-Weil Mass formula. In order to state it, we need to introduce the
following family of modular forms.

Suppose t ∈ N is a given positive integer, and χ is a given Dirichlet character. A (weight 3
2) unary theta

series is a function θt,χ : H → C given by

θt,chi(z) =
∑
n≥0

χ(n)nqtn
2

where q(z) = e2πiz. This is indeed a modular form.

Lemma 10.28. If χ is a Dirichlet character with conductor fχ, then θt,χ ∈M3/2

(
Γ0(4tf

2
χ), χχ−4t

)
.

Definition. A (weight 3
2) unary theta series is a weight 3

2 modular form that can be written as the finite linear
combination of θt,χ for some t and χ.

The following was proven by Schulze-Pillot in 1984.

Theorem 10.29 (Schulze-Pillot). Suppose V is a ternary regular positive definite quadratic space, and L is a
full lattice in V . Then,

1∑
L′ |SO(L′)|−1

∑
L′

1

|SO(L′)|
ΘL′ = EgenL + UspnL

for some unary theta series UspnL depending only on the spinor genus of L, where
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• the sum runs over a set of class representatives L′ in the spinor genus of L, and

• EgenL is the Siegel-Eisenstein series coming from the original Siegel-Weil Mass Formula.

It tuns out that in the ternary case, it was proven recently [KKV22] that any Siegel-Eisenstein series EgenL
in the ternary case can be explicitly determined using class numbers of binary forms!

Definition. Given D, the D’th Hurwitz class number H(D) is the weighted count of all binary quadratic forms
ax2 + bxy + cy2 over Z such that 4ac− b2 = D, where we weight the binary quadratic forms by

• 1
2 if ax2 + bxy + cy2 is equivalent over Z to dx2 + dy2 for some d ∈ Z,

• 1
3 if ax2 + bxy + cy2 is equivalent over Z to dx2 − dxy + dy2 for some d ∈ Z, and

• 1 otherwise.

We set H(0) := − 1
12 .

It is clear that H(D) = 0 unless D ≡ 0,−1 (mod 4). The first few non-zero Hurwitz class numbers are given
below. The values of Hurwitz class numbers are given as the sequence A259825 in the Online Encyclopedia of
Integer Sequences (OEIS).

D 3 4 7 8 11 12
H(D) 1

3
1
2 1 1 1 4

3

Table 3: First few non-zero Hurwitz Class numbers H(D)

It turns out that the generating series of the Hurwitz class numbers

H(z) =
∑
n≥0

H(n)qn

satisfies modularity in some sense. The problem is akin to that for E2; it’s not quite modular, but it’s close to
being modular. One example is as follows.

Proposition 10.30. Suppose a, b ∈ N are such that gcd(a, b) = 1 and b is square-free. Then, the function

Ha,b(z) =
∑
n≥0

(
H(abn)− bH(an/b)

)
qn

is a modular form for weight 3
2 , level Γ0(4b

∏
p|a p), and character χ4ab.

This tells us where to look for our identities. The main result is the following.

Theorem 10.31 ([KKV22, Theorem 1.1]). Suppose V is a ternary regular positive definite quadratic space,
and L is a full lattice in V with discriminant discL = d. Let s be the square-free part of d (i.e. d = s(m)2 for
some m ∈ N). Then, the coefficient of qn in EgenL is of the form

cL(n)
∑
f |2d

aL,f (n) ·H
(
4sn

f2

)

for some choice of coefficients cL(n) and aL,f (n) which are periodic in n.

Example 10.32. Consider L = ⟨1⟩ ⊥ ⟨1⟩ ⊥ ⟨16⟩. One can check either by using SAGE or by using the same
techniques illustrated in Section 8.6 that

genL = clsL+ clsM

where

M =

〈2 0 1
0 2 1
1 1 5

〉 .
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Let us count the number of spinor genera in the genus, i.e. we want to evaluate the group index[
A∗

Q : θ(V )

(
R×

∏
p

θ(Lp)

)]
.

Notice first that Lp is unimodular for all odd primes p, and so θ(Lp) = Z∗
p(Q∗

p)
2 by Lemma 10.25. Lemma 10.26

tells us that Θ(V ) = Q>0. It remains to evaluate θ(L2). Let L = Qx ⊥ Qy ⊥ Qz where Q(x) = Q(y) = 1 and
Q(z) = 16. Then, notice that

τxτx+y, τxτx+2y ∈ SO(L2)

have spinor norms 2(Q∗
2)

2 and 5(Q∗
2)

2. Hence

{1, 2, 5, 10}(Q∗
2)

2 ⊆ θ(L2).

It turns out that this is actually an equality ([CS13, Chapter 15, Section 9.5] gives an explicit algorithm);
intuitively, this is because if u = αx+ βy + γz ∈ L is anisotropic with Q(u) ∈ Z∗

2, then

Q(u) = α2 + β2 + 16γ2

can only take on the values 1 or 5 modulo 8. One can now see fairly easily that

A∗
Q =

(
θ(V )

(
R×

∏
p

θ(Lp)

))
⊔ (ip)p

(
θ(V )

(
R×

∏
p

θ(Lp)

))

where (ip)p ∈ A∗
Q is the idéle given by

ip =

{
1 p ̸= 2,

3 p = 2.

Therefore, [
A∗

Q : θ(V )

(
R×

∏
p

θ(Lp)

)]
= 2.

Hence, we see that spnL = clsL! Using the Siegel-Weil mass formula and its generalisations, we can now find
identities for ΘL and ΘM , as follows.

One can first calculate that |SO(L)| = |SO(M)| = 8, which implies that

EgenL =
1

2
ΘL +

1

2
ΘM

by the usual Siegel-Weil mass formula. Since discL = 16, we know that

EgenL ∈M3/2(Γ0(64), χ64) =M3/2(Γ0(64)).

The Sturm bound for this space is
1

12
· 3
2
· 64

(
1 +

1

2

)
= 12.

So we want to look at the first 13 coefficients for all of our modular forms in order to check identities. A quick
calculation shows that

ΘL(z) = 1 + 4q + 4q2 + 4q4 + 8q5 + 4q8 + 4q9 + 8q10 + 8q13 + · · · .
ΘM (z) = 1 + 4q2 + 4q4 + 8q5 + 4q8 + 16q9 + 8q10 + 8q13 + · · · .

EgenL(z) = 1 + 2q + 4q2 + 4q4 + 8q5 + 4q8 + 10q9 + 8q10 + 8q13 + · · · .

Since spnL = clsL and spnM = clsM , the generalisation of Siegel-Weil tells us that

ΘL = EgenL + UspnL, and ΘM = EgenL + UspnM .

Since 1
2ΘL + 1

2ΘM = EgenL, it then follows that

UspnL = −UspnM = θL − EgenL = 2q − 6q9 + · · · .

We see immediately that
UspnL = 2θ1,χ−1

where χ−1(n) = (−1)(n−1)/2 for n odd.
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A Modules and Algebras

A.1 Modules

Let R be a commutative ring with identity.

Definition. An R-module is an abelian group (M,+) equipped with a ‘multiplication by R’ map

· : R×M →M

such that, for all r, s ∈ R and all x, y ∈M we have

• r · (x+ y) = r · x+ r · y,

• (r + s) · x = r · x+ s · x,

• (rs) · x = r · (s · x), and

• 1 · x = x.

Example A.1. Modules over a field are called vector spaces.

Example A.2. All abelian groups are Z-modules.

Definition. A submodule of an R-module M is a subgroup N ⊂ M such that r · n ∈ N for all r ∈ R and all
n ∈ N . Clearly, a submodule is an R-module in its own right.

Given a submodule N of a module M , we can form the quotient of abelian groups M/N . We may equip this
quotient group by the following action of R:

r · (m+N) = rm+N.

One can then check that M/N equipped with this R-action is itself an R-module. Thus we can take quotients
of modules.

Definition. A homomorphism of R-modules from M to N is a homomorphism of abelian groups f : M → N
such that f(rx) = rf(x) for all x ∈M and all r ∈ R. An isomorphism is a bijective homomorphism.

Definition. A module M is finitely generated if there exists a finite collection of elements x1, ..., xn ∈M such
that for any x ∈M there exists ci ∈ R such that

x = c1x1 + c2x2 + · · ·+ cnxn.

A module M is free if there exists a collection S ⊂M (possibly infinite) that forms a basis for M , i.e. every
x ∈M can be written as

x =
∑
y∈S

cyy

for unique choices of cy ∈ R, where cy = 0 for all but finitely many y ∈ S.

Example A.3. Rn is a finitely generated free module. In fact, every finitely generated free module is isomorphic
to Rn for some n.

Definition. Suppose S is any subset of an R-module M . The R-submodule generated by S is defined to be

⟨S⟩ :=
⋂

N⊇S

N

where N runs through all submodules of M containing S.

Concretely, we have

⟨S⟩ =

{
k∑

i=1

rixi : k ∈ N, ri ∈ R, xi ∈ S

}
.
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A.2 Algebras

As usual, we let R be a commutative ring. However, we will only need the case where R is a field.

Definition. An R-algebra A is an R-module equipped with a binary operation (multiplication)

· : A×A→ A

such that, for any r, s ∈ R and any x, y, z ∈ A, we have

• (x+ y) · z = x · z + y · z,

• x · (y + z) = x · y + x · z,

• (ax) · (by) = (ab)(x · y).

An R-algebra A is associative if the above binary operation also satisfies x ·(y ·z) = (x ·y) ·z for all x, y, z ∈ A.

An R-algebra A is commutative if the above binary operation also satisfies x · y = y · x for all x, y ∈ A.

An R-algebra A is unital if there exists an element 1A ∈ A such that 1A · x = x · 1A = x for all x ∈ A.

Example A.4. For any commutative ring R, the matrices Mn(R) are an associative unital R-algebra.

Example A.5. If S is any ring with R as a subring, then S is a associative R-algebra. If S is commutative and
with identity, then S is a commutative associative unital R-algebra. Thus, for instance, C is a 2-dimensional
commutative associative unital R-algebra.

For us, most of the algebras tend to be unital and associative.

Definition. Given two R-algebras A and B, a homomorphism of R-algebras is a homomorphism of R-modules
f : A→ B further satisfying f(x · y) = f(x) · f(y).

Thus, given any rings S1 and S2 both containing a commutative ring R, a homomorphism S1 → S2 of rings
is a homomorphism of R-algebras if and only if it acts as the identity on R.

A.3 Tensor Products

We shall define tensor products using a universal property. Again, R is a commutative ring.

Definition. Suppose M and N are R-modules. The tensor product of M and N is an R-module M ⊗R N
equipped with a bilinear map ⊗ : M × N → M ⊗R N satisfying the following universal property: For any
R-module T with a bilinear map B : M × N → T , there exists a unique morphism f : M ⊗R N → T of
R-modules satisfying

B(m,n) = f(m⊗ n)

for all m ∈M and n ∈ N .
M ×N

M ⊗R N T

−⊗−

∃!f

B

Due to the universal property, if the tensor product exists it is unique up to unique isomorphism. That it
exists can be checked easily via the following construction:

Let X be the free R-module generated by M ×N . Let Y be the submodule of X generated by all elements
of X of the form

(m1 +m2, n)− (m1, n)− (m2, n), (m,n1 + n2)− (m,n1)− (m,n2), and (rm, n)− (m, rn).

Then one can check that X/Y satisfies the universal property of tensor products, so that M ⊗R N = X/Y .
Thus, as a set, M ⊗RN consists of finite-linear combination of formal symbols m⊗n, where the symbol −⊗−
satisfies

(m1+m2)⊗n = m1⊗n+m2⊗n, m⊗(n1+n2) = m⊗n1+m⊗n2, and r(m⊗n) = (rm)⊗n = m⊗(rn).
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We have a lot of straightforward properties of tensor products:

Proposition A.6. Let R be a commutative ring, and M,N,L are R-modules. Then, we have the following
canonical isomorphisms of R-modules:

1. M ⊗R R ∼=M ;

2. M ⊗R N ∼= N ⊗R M ;

3. L⊗R (M ⊗R N) ∼= (L⊗R M)⊗R N .

It also turns out that the tensor product of finitely generated R-modules is also finitely generated.

Now suppose S is a commutative associative unital R-algebra. In particular, it is an R-module, so that we
can form the tensor productM⊗RS with any R-moduleM . We can equipM⊗RS with an S-action by defining

s · (m⊗ t) := m⊗ (st)

and then extending linearly. In this way, M ⊗R S is an S-module. This process of producing S-modules from
R-modules is called base-change. One can think of base-change as simply a change in coefficients. For instance,
we have

Mn(R)⊗R S ∼=Mn(S) and Rn ⊗R S ∼= Sn.

In fact, for us, just these two facts is more than enough.

Proposition A.7. Suppose L is an R-module, and M and N are S-modules for a commutative associative
unital R-algebra S. We then have the following canonical isomorphism

L⊗R (M ⊗S N) ∼= (L⊗R M)⊗S N

if M is an S-module then it is also an R-module by simply restricting to the image of R in S.
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