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1 Étale Maps and the Étale Site

1.1 Preliminary Concepts about Rings

Definition. An R-module M is flat if the functor (−)⊗RM : ModR → ModR is an exact functor (a priori, it
is a right exact covariant functor).

An R-module M is faithfully flat if for any complex N1 → N2 → N3 of R-modules, the sequence N1 →
N2 → N3 is exact if and only if M ⊗R N1 →M ⊗R N2 →M ⊗R N3 is exact.

A ring map R→ S is flat (resp. faithfully flat) if S is flat (resp. faithfully flat) as an R-module.

Proposition 1.1. Suppose M ∈ ModR. The following are equivalent:

1. M is flat over R;

2. for every ideal I ⊂ R the map I ⊗RM →M is injective;

3. for every finitely generated ideal I ⊂ R the map I ⊗RM →M is injective;

4. for every ideal I ⊂ R, the map I ⊗RM → IM is an isomorphism.

5. for every prime ideal p of R, Mp is a flat Rp module.

6. for every maximal ideal m of R, Mm is a flat Rm module.

We have the following properties. All of these are easy to check, noting that a tensor product is a colimit in
the appropriate category.

Proposition 1.2. Throughout we suppose M ∈ ModR, I, J ⊂ R are ideals of R, and R→ S is a ring map.

1. IM ∩ JM = (I ∩ J)M .

2. Composition of (faithfully) flat ring maps is (faithfully) flat.

3. If R → R′ is (faithfully) flat, and M ′ is a (faithfully) flat R′ module, then M ′ is a (faithfully) flat
R-module.

4. Suppose R : I → CRings an index category, and suppose Mi ∈ ModRi a flat Ri-module for all i ∈ I.
Suppose also for each i → i′ with corresponding ring-map ϕi→i′ : Ri → Ri′ , there is a ϕi→i′-linear map
fi→i′ : Mi →Mi′ that is functorial. Then, colimi∈IMi is a flat colimi∈IRi module.

5. Suppose M is (faithfully) flat over R and R→ R′ a ring map. Then M ⊗R R′ is (faithfully) flat over R′.
If R→ R′ is moreover faithfully flat, then M ⊗R R′ is flat over R′ if and only if M is flat over R.

6. If R → S is flat, then R → S is faithfully flat if and only if the induced map Spec(S) → Spec(R) is
surjective.

7. If S is a localization of R at some multiplicative subset, then S is a flat R-algebra.

8. If M is a flat R-module, then the following are equivalent:

• M is faithfully flat;

• for every non-zero N ∈ ModR, M ⊗R N is non-zero;

• for all p ∈ Spec(R) the tensor product M ⊗R κ(p) is non-zero (here, κ(p) = Frac(R/p));

• for all maximal ideals m of R, M/mM is non-zero.

9. A flat local ring homomorphism is faithfully flat.

See Section 10.39 of [Sta22] for the proofs of the above two propositions.

Definition. A ring map R → S is finitely presented if there exists an exact sequence R⊕m → R⊕n → M → 0
for some m,n ∈ N, i.e. M ∼= Rn/N where N ⊂ Rn itself is a finite free R-module.

Definition. A ring map R → S is standard étale if there exist f, g ∈ R[x] with f monic such that S ∼=
(R[x]/ 〈f〉)g with f ′ a unit in S, and R→ S is the canonical map R→ (R[x]/ 〈f〉)g.

Definition. Suppose we have a ring map R → S. For any extension of R-algebras A → A′ where ker(A →
A′)2 = 0, consider the natural map HomR(S,A)→ HomR(S,A′). We say that R→ S is formally unramified if
this natural map is an injection, is formally smooth if this natural map is a surjection, and is formally étale if
it is a bijection. Thus a formally unramified and formally smooth map is formally étale.
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1.2 Étale Morphisms of Schemes

(see [Sta22] for proofs)

Lemma-Definition. A morphism f : X → Y of schemes is flat if for any open affines Spec(A) ⊂ X and
Spec(B) ⊂ Y , the corresponding ring map B → A is flat. A morphism is faithfully flat if it is both surjective
and flat.

It is easy to check that flatness is an affine local (in the sense of Vakil) property on the target Y .

Proposition 1.3. Suppose f : X → S is a morphism of schemes.

1. f is flat if and only if for every x ∈ X the local ring map f#
x : OY,f(x) → OX,x is flat.

2. f is flat if and only if for every S → S′, the pull-back functor QCoh(S′) → QCoh(X ×S S′) induced by
the map X ×S S′ → S′ is an exact functor.

3. Composite of flat morphisms is flat.

4. Fibre product of two flat (resp. faithfully flat) morphisms is flat (resp. faithfully flat).

5. Flatness and faithful flatness are preserved by base change.

6. If f is flat, then for every x ∈ X and every s ∈ S such that f(x) ∈ {s}, there exists x′ ∈ X such that
s = f(x′) and x ∈ {x′}.

7. If f is flat and locally of finite presentation, then it is universally open, i.e. for every S′ → S the induced
map X ×S S′ → S′ is an open map.

8. If f is quasi-compact and faithfully flat (i.e. fpqc), then T ⊂ S is open (respectively closed) iff f−1(T ) is
open (respectively closed).

Thus, fpqc maps can be thought of as quotient maps.

Definition. A morphism f : X → Y is unramified if it is locally of finite presentation and for each x ∈ X
and y = f(x), the residue field κ(x) is a separable algebraic extension of κ(y), and fx(mY,y)OX,x = mX,x where
fx : OY,y → OX,x.

A map being unramified is affine local (in the sense of Vakil) on the target Y .

Proposition 1.4. Suppose f : X → Y is a morphism of schemes.

1. f is unramified if and only if it is locally of finite presentation and for any affine opens Spec(B) ⊂ X and
Spec(A) ⊂ Y the induced map f# : A→ B is formally unramified.

2. f is unramified if and only if it is locally of finite presentation and the diagonal map X → X ×Y X is an
open embedding.

3. Composite of unramified morphisms is unramified.

4. Base change of an unramified morphism is unramified.

5. Open immersions are unramified.

6. f is unramified if and only if it is locally of finite presentation and the diagonal map X → X ×Y X is an
open immersion.

7. If f : X → Y is a morphism of S-schemes where X is unramified over S and Y is locally of finite type
over S, then f is unramified.

8. Suppose X and Y are S-schemes and f, g : X → Y morphisms over S. Suppose Y is unramified over S.
Let x ∈ X be such that f(x) = g(x) =: y where the maps fx, gx : κ(y) → κ(x) induced by f and g are
equal. Then, there exists a Zariski open neighbourhood U of x in X such that f |U = g|U .

Lemma-Definition. Suppose f : X → S is a morphism locally of finite presentation. We say that f is smooth
if any of the following hold:

1. for any affine opens Spec(B) ⊂ X and Spec(A) ⊂ S the induced map f# : A→ B is formally smooth;

3



2. f is flat and for every S-morphism s̄ : Spec k ↪→ S for k algebraically closed, the fibre Xs̄ = X ×S s̄ is
regular

3. f is flat and all fibers f−1(s) are regular and remain so after extension of scalars to some perfect extension
of κ(s)

We now come to the definition of an étale map.

Lemma-Definition. Suppose f : X → Y is a morphism of schemes. We say that f is étale if it has any of the
following equivalent properties:

1. f is flat and unramified;

2. f is smooth and unramified;

3. f is flat, locally of finite presentation, and every fibre f−1(y) is given by the disjoint union
⊔
i∈I Spec ki,y

where each ki,y is a finite separable field extension of the residue field κ(y);

4. f is smooth and locally quasi-finite;

5. f is locally of finite presentation and for any affine opens Spec(B) ⊂ X and Spec(A) ⊂ S the induced
map f# : A→ B is formally étale;

6. for every x ∈ X there is an open neighbourhood U of X around x and an open affine V = SpecA around
f(x) with f(U) ⊂ V such that U is V -isomorphic to an open subscheme of Spec

(
A[t]/ 〈f〉

)
f ′

for some

monic f ∈ A[t] (with f ′ the usual derivative of f).

We have the following important properties of étale maps.

Proposition 1.5. 1. Étale morphisms are preserved under composition and base change.

2. Being an étale morphism is a local property on both the source and the target.

3. Product of a finite family of étale morphisms is étale.

4. Suppose g : Y → Z an unramified map and f : X → Y a map such that g ◦ f is étale. Then, f is étale.

5. Any S-morphism between étale S-schemes is étale.

6. Étale morphisms are locally quasi-finite.

7. Open immersions are étale. Moreover, a morphism is an open immersion if and only if it is étale and
universally injective.

8. A map X → Spec k is étale if and only if X is the disjoint union of Spec k′ for k′ a finite separable field
extension of k.

9. Étale morphisms are open.

1.3 Sites and Topoi

Suppose now C is a category with all fibre products.

Definition. A Grothendieck Topology T on C is for all X ∈ C a collection CovT (X) of sets of morphisms
Y → X with target X such that:

• for all Y → X, and for all {Ui → X}i∈I ∈ CovT (X), we have {Ui ×X Y → Y }i∈I ∈ CovT (Y ); and

• if {fiUi → X}i∈I ∈ CovT (X), and for all i ∈ I we have {gij : Uij → Ui}j∈Ji ∈ CovT (X), then

{fi ◦ gij : Uij → X : i ∈ I, j ∈ Ji} ∈ CovT (X).

• if f : X ′ ∼= X, then {f : X ′ → X} ∈ CovT (X).

A category C equipped with a Grothendieck topology T is called a site.

Here, the collection CovT (X) should be thought of as the collection of all open covers of X.
The example that most concerns us is when C is the category of S-schemes or some subcategory of S-schemes,

where S is some fixed base-scheme. Throughout, we use the following notation:
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• SchS is the category of S-schemes.

• Schét
S is the category of étale S-schemes, i.e. it is the subcategory of SchS consisting of those S-schemes

U such that the structure map U → S is étale. This subcategory is a full-subcategory since any map
U → U ′ between étale S-schemes U and U ′ must itself be étale (by Proposition 1.5(5)).

The following topologies are most important.

• The Zariski topology on SchS is given by

CovZar(X) =

{
{fi : Ui → X}i∈I :

⋃
i∈I

fi(Ui) = X, fi an open embedding

}
.

• The étale topology on Schét
S or SchS is given by

Covét(X) =

{
{fi : Ui → X}i∈I :

⋃
i∈I

fi(Ui) = X, fi an étale map

}
.

The étale site is Schét
S equipped with the above étale topology.

• The smooth topology on SchS is given by

Covsm(X) =

{
{fi : Ui → X}i∈I :

⋃
i∈I

fi(Ui) = X, fi a smooth map

}
.

• The fppf topology on SchS is then given by

Covfppf(X) =

{
{fi : Ui → X}i∈I :

⋃
i∈I

fi(Ui) = X, fi is flat and of finite presentation

}
.

Here, a map is of finite presentation if it is quasi-compact, quasi-separated, and locally of finite presenta-
tion.

• The fpqc topology on SchS is then given by

Covfpqc(X) =

{
{fi : Ui → X}i∈I :

⋃
i∈I

fi(Ui) = X, fi is flat and quasi-compact

}
.

The above topologies are listed in order of coarseness, i.e.

CovZar ⊂ Covét ⊂ Covsm ⊂ Covfppf ⊂ Covfpqc.

This follows from the fact that for an arbitrary morphism f : X → S, we have

f an open embedding =⇒ f étale =⇒ f smooth =⇒ f is flat and finitely presented =⇒ f is flat and
quasi-compact.

Now, suppose C is a site.

Definition. A presheaf F of sets (resp. abelian groups) on a site C is a contravariant functor F : Cop → Set
(resp. F : Cop → Ab).

A morphism of pre-sheaves is simply a natural transformation between the two contravariant functors.

If f : X → Y is a morphism in C, then we denote the morphism F(f) of sets/abelian groups by f∗.

Definition. A presheaf F on a site is a sheaf if for all X ∈ C and for all covers {fi : Ui → X} ∈ CovT (X), the
following two conditions hold:

• (separated) For all s, s′ ∈ F(X), if f∗i s = f∗i s
′ for all i ∈ I, then s = s′.
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• (glueability) If for each i we have si ∈ F(Ui) such that, writing

Ui ×X Uj Ui

Uj X

f ′i

f ′j

fi

fj

y ,

we have (f ′j)
∗si = (f ′i)

∗sj for all i, j ∈ I, then there exists s ∈ F(X) such that f∗i s = si for all i ∈ I.

The global sections functor is the covariant functor Shvét(S)→ Set given by F 7→ F(S).
The category of sheaves of sets on a site is called a topos.

As usual, the sheaf conditions can be summarized in the usual equalizer diagram:

F(X)→
∏
i∈I
F(Ui) ⇒

∏
i,j∈I

F(Ui ×X Uj).

Lemma 1.6. A morphism of pre-sheaves F → G is a monomorphism in the category of pre-sheaves if and only
if F(U)→ G(U) is an injective map for all U ∈ Schét

S .

From now on, we will denote the category of sheaves of sets on the étale site Schét
S (NOT the full category

SchS equipped with the étale topology) by Shvét(S). For the subcategory of sheaves of abelian groups, we use
AbShvét(S). One checks that Shvét(S) for the topologies listed above have arbitrary products, have an initial
object (the empty sheaf), and have a final object that sends every object of Schét

S to a singleton set.

Remark 1.7. While most of the results that follow are direct consequences for a topos on a site, we stick to the
étale site for concreteness. For reference, chapter 1 of [Tam94] and chapter 2-3 of [Mil80] develop the theory of
sheaves on a site in complete generality.

However, at some point we will need to use different topologies on SchS , for instance the fppf site or the
Zariski site (the usual topology). This will be true especially during discussions of comparison theorems.

1.4 Examples of Étale Sheaves

We now describe some important classes of examples of sheaves on Schét
S . All of these examples come from

[Con].

Example 1.8. For any X ∈ SchS , consider the functor X : (Schét
S )op → Set given by

X(T ) = HomS(T,X)

where HomS(T,X) denotes the homset in the category SchS . Then, X ∈ Shvét(S). Yoneda’s lemma implies
that the functor Schét

S → Shvét
S given by X 7→ X = HomS(·, X) is fully faithful; sheaves in the essential image

of this functor are called representable.
The global sections functor F 7→ F(S) is naturally isomorphic to the functor F → HomShvét(S)(S,F).

Example 1.9. If S′ is a scheme and there is a morphism j : S′ → S is étale, then we can define the pull-back
functor j∗ : Shvét(S) → Shvét(S

′) which sends any F ∈ Shvét(S) to the étale sheaf j∗F ∈ Shvét(S
′) defined

by j∗F(X → S′) = F(X → S′
j−→ S) (i.e. any X ∈ SchS′ is considered as a scheme over S by composing the

structure map with j). If the étale map j : S′ → S is understood, then we usually denote j∗F by F|S′ .
Example 1.10. If F ,G ∈ Shvét(S), the presheaf

Hom(F ,G) : U 7→ HomShvét(U)(F|U ,G|U )

is in fact a sheaf of sets, called the hom-sheaf. If F ,G ∈ AbShvét(S) instead, then one can check that

U 7→ HomAbShvét(U)(F|U ,G|U )

is a sheaf of abelian groups. This is also denoted by Hom(F ,G), where the context should make it clear which
hom-sheaf is being referred to.

Example 1.11. Suppose f : S → S′ is an arbitrary map of schemes. The push-forward functor f∗ : Shvét(S)→
Shvét(S

′) takes a sheaf F ∈ Shvét(S) and sends it to the sheaf (f∗F) : U 7→ F(S′ ×S U) for all étale S-schemes
U .

Whenever f : S′ → S is étale, one checks that (f∗, f
∗) is an adjoint pair, i.e.

HomShvét(S′)(f
∗F ,F ′) ∼= HomShvét(S)(F , f∗F ′).

This adjunction holds true more generally, but for f not étale, the definition of the push-forward functor is
more involved (see below).
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Example 1.12. As an example of the previous adjunction, we compute the pull-back of a representable sheaf.
Suppose j : S′ → S is an étale map, and suppose X ∈ Schét

S is arbtirary. For any F ∈ Shvét(S
′), we have

HomShvét(S′)(j
∗X,F) = HomShvét(S)(X, j∗F) = (j∗F)(X) = F(X ×S S′) = HomShvét(S′)(X ×S S

′,F).

Yoneda’s lemma implies that we have a natural isomorphism j∗X ∼= X ×S S′.
Example 1.13. If S = Spec k where k is a separably closed field, then étale k-schemes are disjoint unions of
copies of S. Thus, Schét

S is equivalent to the category of sets via the global-sections functor.

Example 1.14. Consider the pre-sheaves Ga = Ga,S : (Schét
S )op → Ab given by Ga(U) = Γ(U,OU ) viewed as

an additive group, and Gm = Gm,S : (Schét
S )op → Ab given by Gm(U) = Γ(U,OU )∗ (the group of units). On

morphisms, both Gm and Ga sends f : U → U ′ to the map of abelian groups induced by the map f# : OU ′ → OU .
By the usual glueing properties of ordinary sheaves, one checks that Ga and Gm are in fact sheaves. In fact,
one can show that

Ga,S = S ×SpecZ Spec
(
Z[t]
)

and Gm,S = S ×SpecZ Spec
(
Z[t, t−1]

)
.

In fact, these sheaves are representable, specifically by Ga,S ∼= S ×Z SpecZ[t] and Gm,S ∼= S ×Z SpecZ[t, t−1].
One may also view the representable sheaf Ga,S as a sheaf of rings, in which case we denote this by OS,ét.

1.5 Galois Modules and the Étale Topos over Spec k

Throughout this subsection, we suppose that S = Spec k for some field k. We fix a choice of separable algebraic
closure k̄ of k. Throughout, denote by Gk the absolute Galois group Gal(k̄/k). This section will describe
the equivalence between Shvét(Spec k) and the category of (left) discrete Gk-sets. As a consequence, Galois
cohomology for k̄/k computes sheaf cohomology on AbShvét(Spec k).

Definition. Suppose G is a profinite group (i.e. a compact Hausdorff totally disconnected topological group).
A (left) discrete G-set is a set M with a group action G such that, when M is equipped with the discrete
topology, the G-action is continuous. Concretely, M is a discrete G-set if and only if for each m ∈ M the
stabilizer subgroup StabG(m) = {g ∈ G : gm = m} is an open (and thus also a closed finite index) subgroup of
G.

The category of discrete G-sets will be denoted by GSetdisc.
If M is an abelian group that is also a discrete G-set and the G-action is compatible with the group structure

on M in the obvious way, then we say that M is a discrete G-module.
Recall that Gk is a profinite group, where a basis of open neighbourhoods of the identity is given by the

collection of Gal(K/k) for K/k a finite Galois extension. A discrete Gk-set is often called a discrete Galois set.

Remark 1.15. The abelian category of discrete G-modules has enough injectives, and so we can find derived
functors for left-exact functors. For an explicit construction of injectives, see Conrad’s notes [Con].

Remark 1.16. Recall that X is étale over Spec k if and only if X is the disjoint union of various Spec k′ for k′ a
finite separable extensions of k. Writing X =

⊔
iXi (with Xi = Spec ki, ki/k finite separable), we see that the

collection {Xi} is an étale cover of Spec k, and so the two sheaf axioms imply that

F(X) =
∏
i∈I
F(Xi) ∼=

∏
i∈I
F(Spec ki)

for every F ∈ Shvét(Spec k). It thus suffices to understand the properties of sheaves on Spec ki → Spec k.

Theorem 1.17. We have a natural equivalence of categories

Schét
Spec k

∼←→ Shvét(Spec k)
∼←→ GkSetdisc.

We omit a detailed proof; instead, we describe what each of the functors are without checking that the
functors do indeed induce equivalences. For details see [Con]. Throughout, we will fix a choice of separable
algebraic closure k̄ of k.

Schét
Spec k → GkSetdisc

This is simply given by X 7→ X(k̄).

Schét
Spec k → Shvét(Spec k)

This is simply the functor of points X 7→ X described previously.

7



Shvét(Spec k)→ GkSetdisc

Fix a sheaf F . If k′ ↪→ k′′ is any inclusion of finite separable extensions of k, then we have a corresponding
morphism Spec k′′ → Spec k′ in SchSpec k. This gives a natural map F(Spec k′)→ F(Spec k′′). Notice thus that
F ◦ Spec gives a covariant functor from the category of finite separable extensions of k to Set.

The action of the Galois group Gal(k′′/k′) on k′′ induces an action of Gal(k′′/k′) on Spec k′′, and thus we
have an action of Gal(k′′/k′) on F(Spec k′′). Moreover, as k′ ↪→ k′′ is Gal(k′′/k′)-invariant, it follows that
F(Spec k′)→ F(Spec k′′) is Gal(k′′/k′)-invariant.

Lemma 1.18. For any F ∈ Shvét(Spec k) and for any finite Galois extension k′′/k′ (where k′′/k is a finite
separable extension), the natural map F(Spec k′)→ F(Spec k′′) is in fact injective and induces a natural bijection

F(Spec k′)
∼−→ F(Spec k′′)Gal(k′′/k′).

Proof. Notice that we have an isomorphism of k′′ algebras

k′′ ⊗k′ k′′
∼−→

∏
g∈Gal(k′′/k′)

k′′, x⊗ y 7→ (x · g(y))g∈Gal(k′′/k′).

Here, k′′⊗k′ k′′ is a k′′ algebra via the left tensor factor, whereas the product
∏

Gal(k′′/k′) k
′′ is a k′′ algebra via

the diagonal inclusion. Now, Spec k′′ → Spec k′ is an étale cover, and so the sheaf axioms imply that

F(Spec k′)→ F(Spec k′′) ⇒ F(Spec k′′ ×Spec k′ Spec k′′)

is exact, where the top and bottom arrows are respectively the identification of k′′ with the left and right tensor
factors respectively k′′⊗k′ k′′. Exactness automatically implies that F(Spec k′)→ F(Spec k′′) is injective. More-
over, from the explicit isomorphism of algebras k′′ ⊗k′ k′′

∼−→
∏
g∈Gal(k′′/k′) k

′′, x⊗ y 7→ (x · g(y))g∈Gal(k′′/k′),
we then see that in

Spec k′′ ⇒
⊔

g∈Gal(k′′/k′)

F(Spec k′′)

the top arrow corresponds to the diagonal inclusion s 7→ (s, ..., s), whereas the bottom arrow is s 7→ (gs)g∈G.
Thus, we see from the exactness of

F(Spec k′)→ F(Spec k′′) ⇒
⊔

g∈Gal(k′′/k′)

F(Spec k′′)

that s ∈ F(Spec k′′)Gal(k′′/k′) if and only if s ∈ ker
(
F(Spec k′′) ⇒

⊔
g∈Gal(k′′/k′) F(Spec k′′)

)
if and only if

s ∈ F(Spec k′).

Now let Σ be the set of all finite Galois extensions of k inside k̄ (where recall that we fix a choice of k̄).
The previous lemma implies that for every k′ → k′′ in Σ we have a corresponding inclusion F(Spec k′) ∼=
F(Spec k′′)Gal(k′′/k′) ⊂ F(Spec k′′). This in particular implies that the map F(Spec k′) → F(Spec k′′) is com-
patible with Galois actions via the surjection Gal(k′′/k)→ Gal(k′/k). Hence, we see that

MF := colimk′∈ΣF(Spec k′)

has a natural structure of a discrete left Gal(k̄/k)-set, and moreover by unravelling the definition of MF as a

filtered colimit, we see that the natural map F(Spec k′)→MF is an isomorphism onto M
Gal(k̄/k′)
F as Gal(k′/k)-

sets. This gives us the functor
Shvét(Spec k)→ GkSetdisc, F 7→MF .

GkSetdisc → Shvét(Spec k)

Suppose M is a discrete Gk-set. For any finite separable extension k′ over k define

FM (Spec k′) =

{
(mi)i ∈

∏
i:k′↪→k̄

M
∣∣∣ mg◦i = g(mi) for all g ∈ Gal(k̄/k)

}
.

Here, i runs through all finitely many k-embeddings of k′ into k̄. Here, note that mi ∈ MGal(k̄/i(k′)) since
g ∈ Gal(k̄/i(k′)) if and only if g ◦ i = i. Moreover, for any k′ ∈ Σ (for Σ the set of all finite Galois extensions of
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k inside k̄ as above), we have the canonical inclusion k′ ↪→ k̄ arising from membership in Σ, and this inclusion
defines the bijection

FM (Spec k′) ∼= MGal(k̄/k′).

For any k-embedding j : k′ ↪→ k′′ of finite separable extensions of k, define the map

FM (j) : FM (Spec k′)→ FM (Spec k′′), Fm(j)
(
(mi′)i′

)
= (mi′′◦j)i′′

where we note that every i′ : k′ ↪→ k̄ over k is of the form i′′ ◦ j for some i′′ : k′′ ↪→ k̄ over k.
For an arbitrary étale Spec k-scheme we then have

FM (
⊔

Spec kα) =
∏
FM (Spec kα),

and similarly for arbitrary morphisms in Schét
Spec k. In this way we have a pre-sheaf FM , which can be checked

to be a sheaf.

1.6 Sheafification, Extensions-by-Initials, and Pull-Backs

Definition. Suppose we have a pre-sheaf F : (Schét
S )op → Set. The sheafification of F is a sheaf Fsh ∈ Shvét(S)

equipped with a pre-sheaf morphism F → Fsh with the universal property that any pre-sheaf morphism F → G
with G ∈ Shvét(S) factors through to a unique map Fsh → G.

Remark 1.19. While the exact construction doesn’t matter and is in fact not helpful, we still present it here
for completeness. We describe a −+ construction on pre-sheaves that takes arbitrary pre-sheaves to separated
pre-sheaves (i.e. those that only satisfy the separated axiom of sheaves), and that takes separated pre-sheaves
to sheaves. Thus, given an arbitrary pre-sheaf, applying the −+ construction once yields a separated pre-sheaf
that satisfies a corresponding universal property, and applying −+ again yields a sheaf.

For any U ∈ Schét
S and any étale cover U = {Ui}i∈I of U , let H0(U ,F) be the set of I-tuples (si) ∈∏

i∈I F(Ui) such that si|Uij = sj |Uij for all i, j, where Uij := Ui ×U Uj . A refinement U ′ of U defines a map
H0(U ,F)→ H0(U ′,F). Taking the colimit yields

F+(U) := colimU∈Covét(U)H
0(U ,F).

Proposition 1.20. Suppose F is a pre-sheaf with sheafification Fsh.

1. For any s ∈ Fsh(U) there exists an étale cover {Ui} of U and an element si ∈ F(Ui) mapping (via
F → Fsh) to s|Ui ∈ Fsh(Ui).

2. For any s, t ∈ F(U) which are mapped to the same element in Fsh(U), there exists an étale cover {Ui} of
U such that s|Ui = t|Ui in F(Ui) for all i.

3. If F → G is a monomorphism of pre-sheaves, then the sheafification Fsh → Gsh is also a monomorphism
in the category of Shvét(S).

By sheafification, we can construct the image sheaf of a scheme map, the quotient of a sheaf by an equivalence
relation, etc. Everything carries over to AbShvét(S) as expected. We give two more constructions that require
sheafification

Definition. Suppose j : U → S is an étale morphism. Define the functor jSet
! : Shvét(U)→ Shvét(S) by taking

F to the sheafification jSet
! F of the pre-sheaf

V 7→
⊔

f∈HomS(V,U)

F(V
f−→ U).

This functor is called the extension-by-∅ functor1.

Definition. Suppose j : U → S is an étale morphism. Define the functor jAb
! : AbShvét(U)→ AbShvét(S) by

taking F to the sheafification jAb
! F of the pre-sheaf

V 7→
⊕

f∈HomS(V,U)

F(V
f−→ U).

This functor is called the extension-by-0 functor.

1jSet! is sometimes read as the ‘shriek-pushforward’ by j.
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Remark 1.21. This is in fact the same construction categorically speaking, since both disjoint unions
⊔

in
Set and direct sums

⊕
in Ab are co-products. However, since the forgetful functor Ab → Set does not take

co-products (direct sums) to co-products (disjoint unions), it follows that jAb
! and jSet

! are not compatible with
the forgetful functor AbShvét(−)→ Shvét(−).

Proposition 1.22. For any j : U → S étale, the functor jSet
! (resp. jAb

! ) is left-adjoint to j∗Shvét(S) →
Shvét(U) (resp. j∗AbShvét(S)→ AbShvét(U)).

Proof Sketch. We prove for jSet
! , since the proof for jAb

! follows similarly. Given any F ∈ Shvét(U) and any
G ∈ Shvét(S), we need to find a bijection of sets

HomShvét(S)(j!F ,G)→ HomShvét(U)(F , j∗G)

where for notational simplicity we write j! for jSet
! . Suppose ϕ : j!F → G is a sheaf morphism. Then, we have

a map ϕ̂ : F → j∗G which, for any (V
g−→ U) ∈ Schét

U is given by the composition

F(V
g−→ U) ↪→

⊔
g′∈HomS(V,U)

F(V
g′−→ U)→ (j!F)(V

j◦g−−→ S)
ϕV−−→ G(V

j◦g−−→ S) = (j∗G)(V ).

On the other hand, given a map ψ : F → j∗G, notice that we have a pre-sheaf morphism defined by

⊔
f∈HomS(S′,U)

F
(
S′

f−→ U
) ⊔

f ψ
(
S′

f−→U

)
−−−−−−−−−→

⋃
f∈HomS(S′,U)

(j∗G)
(
S′

f−→ U
)
⊆ G(S′)

for any S′ ∈ Schét
S . This factors into a sheaf morphism ψ̃ : j!F → G. It is now straightforward to see thatˆand˜

are inverse maps to each other.

Now, given an arbitrary map f : S′ → S of schemes, we construct the pull-back functor f∗ : Shvét(S) →
Shvét(S

′). For arbitrary scheme morphisms the construction is more delicate, though one can easily see that if
f is étale the construction is the same as the one done previously.

Fix X ′ ∈ Schét
S′ . Consider the subcategory I(X ′) of Schét

S whose objects are étale S-schemes X equipped
with a map X ′ → X such that

X ′ X

S′ S
f

commutes, and morphisms between two objects (X1, X
′ → X1) and (X2, X

′ → X2) for X1, X2 ∈ Schét
S are

maps φ : X1 → X2 such that

X ′

S′ X1 X2

S

f

φ

commutes. This category is co-filtered since for any two X1, X2 ∈ Schét
S equipped with maps X ′ → X1, X

′ → X2,
the étale S-scheme X1×SX2 equipped with the canonically induced map X ′ → X1×SX2 belongs to the category
I(X ′) as well. Thus, given an arbitrary F ∈ Shvét(S), we can define the filtered colimit

(f−1F)(X ′) := colim
X∈I(X′)

F(X),

in the category of sets. This gives a pre-sheaf f−1F : Schét(S
′) → Set. Since filtered colimits in sets commute

with finite limits, it follows that the functor F 7→ f−1F from pre-sheaves on S to pre-sheaves on S′ commutes
with with finite limits as well. Sheafifying the above construction, we get a functor f∗ : Shvét(S) → Shvét(S

′)
that commutes with all finite limits.

Remark 1.23. If f : S′ → S is étale, then notice that the category I(X ′) has an initial object X ′ → S ∈ I(X ′),
and so the colimit taken above degenerates to (f−1F)(X ′) = F(X ′ → S) which is already a sheaf. We thus see
that the given definition of pull-backs coincides with the previous definition of pull-backs by étale morphisms.
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Remark 1.24. The same construction can be made to define the pull-back functor f∗ : AbShvét(S)→ AbShvét(S
′).

Notice as before that these two pull-backs are not compatible with the forgetful functor, since limits and colimits
in the categories Set and Ab are different.

Example 1.25. Suppose k → k′ is an extension of fields with compatible choices of separable closures k̄ and k̄′.
Let f : Spec k′ → Spec k be the induced map. Under the equivalence of categories between Galois-sets and étale
sheaves of sets, one can check that the functor f∗ : Shvét(Spec k) → Shvét(Spec k′) corresponds to the functor
GkSetdisc → Gk′Setdisc given by composing the action map with the continuous map Gal(k̄′/k′)→ Gal(k̄/k).

Proposition 1.26. For an arbitrary morphism f : S′ → S of schemes, the pull-back f∗ : Shvét(S)→ Shvét(S
′)

constructed above is left-adjoint to the push-forward f∗ : Shvét(S
′)→ Shvét(S).

Proof Sketch. As usual we define the maps going either way, but do not check all details. Fix F ∈ Shvét(S) and
F ′ ∈ Shvét(S

′); we want to construct a natural bijection

HomShvét(S′)(f
∗F ,F ′) ∼= HomShvét(S)(F , f∗F ′).

Suppose α : f∗F → F ′ is a sheaf-homomorphism. Then, define βα : F → f∗F ′ as follows. For any X ∈ Schét
S ,

consider X ′ = X ×S X ′ ∈ Schét
S′ . The cartesian square defining X ′ implies that X is in the subcategory I(X ′)

of Schét
S , and so we have a well-defined map F(X) → colimY ∈I(X′)F(Y ′) = (f−1F)(X ×S S′). Composing

this with the canonical map induced by sheafification, we get a map F(X)→ f∗F(X ×S S′), and so we define
βαX : F(X)→ f∗F ′(X) = F ′(X ×S S′) by composing the map F(X)→ f∗F(X ×S S′) with αX×SS′ .

On the other hand, suppose β : F → f∗F ′ is a sheaf morphism. Fix X ′ ∈ Schét
S′ . For each X ∈ I(X ′), we

have a map βX : F(X)→ F ′(X ×S S′). Since X ′ → X and X ′ → S′, we have an induced map X ′ → X ×S S′
so that X ×S S′ ∈ I(X ′), and we thus get a map F ′(X ×S S′) → F ′(X ′). Pre-composing with βX , we have a
map F(X) → F ′(X ′) for all X ∈ I(X ′), and so we get a map from the colimit (f−1F)(X ′) → F ′(X ′). This
defines a pre-sheaf morphism f−1F → F ′, which then factors into a sheaf morphism αβ : f∗F → F ′.

Unravelling definitions, one checks immediately that αβ
α

= α and βα
β

= β (on the nose).

1.7 Category Theoretic Properties of the Étale Topoi

Proposition 1.27. Suppose ϕ : F → G is a sheaf-map between sheaves F ,G ∈ Shvét(S).

1. ϕ is a monomorphism in the category Shvét(S) if and only if ϕU : F(U) → G(U) is injective for all
U ∈ Schét

S .

2. ϕ is an epimorphism in the category Shvét(S) if and only if ϕU : F(U)→ G(U) is étale locally surjective,
i.e. for all U ∈ Schét

S and for all t ∈ G(U), there exists an étale cover {Ui} ∈ Covét(U) and for each i
there exists si ∈ F(Ui) such that ϕUi(si) = t|Ui .

3. ϕ is an epic monomorphism in the category Shvét(S) if and only if it is an isomorphism.

Similar results hold for AbShvét(S). In particular, AbShvét(S) is an abelian category.

Proof. We prove part (1). The other two results follow as in ordinary sheaf theory. It is easy to see that if
ϕU : F(U) → G(U) is injective, then for any ψ : F ′ → G we have at most one map ψ′ : F ′ → F such that
ψ = ϕ ◦ ψ′ since there is at most one map ψ′U satisfying ψU = ϕU ◦ ψ′U .

Now suppose ϕ is a monomorphism, and suppose for some U ∈ Schét
S we have x1, x2 ∈ F(U) such that

ϕU (x1) = ϕU (x2). For i = 1, 2, we define two maps ψ(i) : U → F . Indeed, for any V ∈ Schét
S , we define a

map ψ
(i)
V : U(V ) = HomS(V,U) → F(V ). For all f ∈ U(V ), define ψ

(i)
V (f) = F(f)(xi) (where note that for

f : V → U , the contravariant functor F gives F(f) : F(U)→ F(V )). For any g : W → V we have

U(V ) F(V )

f F(f)(xi)

f ◦ g F(f ◦ g)(xi)

U(W ) F(W )

(−)◦g F(g)

ψ
(i)
V

ψ
(i)
W
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where notice that F(f ◦ g)(xi) = F(g)
(
F(f)(xi)

)
. Hence ψ(i) : U → F is a sheaf morphism. For any V ∈ Schét

S ,
we have

ϕV ◦ ψ(i)
V (f) = ϕV

(
F(f)(xi)

)
= ϕU (xi)

for every f ∈ U(V ), and so ϕV ◦ψ(1)
V = ϕV ◦ψ(2)

V . Since ϕV is a monomorphism, it follows that ψ
(1)
V = ψ

(2)
V and

so x1 = x2. Therefore ϕU is injective for all U , as required.

Part (1) immediately implies the following.

Corollary 1.27.1. For any U ∈ Schét
S , the functor Shvét(S)→ Set,F 7→ F(U) is left-exact. The restriction of

this functor to abelian sheaves AbShvét(S)→ Ab is also left-exact.

While AbShvét(S) is an abelian category, the category Shvét(S) is not. Thus, one needs to define exactness
slightly differently.

Definition. Suppose F : C → C ′ is a covariant functor between two categories that admit finite limits and
colimits. The functor F is left exact if it commutes with finite limits, and it is right exact if it commutes with
finite colimits. It is exact if it is both left exact and right exact.

Remark 1.28. In a general category, it is useful to keep the following facts in mind when thinking about
exactness:

• Right adjoints commute with all limits and are thus always left-exact.

• Left adjoints commute with all colimits and are thus always right-exact.

• Colimits always commute with colimits, and similarly limits always commute with limits.

• In Set (and other ‘nice’ enough categories), filtered colimits commute with finite limits.

As an application of the last statement, we have the following result.

Proposition 1.29. Sheafification is an exact functor from pre-sheaves of sets (resp. abelian groups) on Schét
S

to sheaves of sets (resp. abelian groups) on Schét
S .

Example 1.30. Suppose f : S′ → S is arbitrary. Since (f∗, f∗) is an adjunction, it follows that f∗ is right exact
while f∗ is left exact.

We claim that f∗ is also left exact. If f is étale, this follows from the adjunction

Shvét(S) Shvét(S
′)f∗

f∗

fSet
!

a
a

where recall the notation that for two categories C and D with functors F : C → D and G : D → C, we write

C D
F

G

a

to denote that (F,G) is an adjunction, i.e. F is left-adjoint to G, or equivalently, that G is right-adjoint to
F . In general, for an arbitrary f : S′ → S, notice that the functor f−1 on pre-sheaves is defined by taking a
filtered colimit of sets at each point. Sheafification is done similarly, since the (−)+ construction is defined by
filtered colimits at each point. Hence, in all, f∗F for F ∈ Shvét(S) is constructed by defining f∗F(X) for all
X ′ ∈ Schét

S′ by taking a filtered colimit. However, all limits are computed pointwise, i.e. if Fi is a diagram of
pre-sheaves or of sheaves then (limFi)(X) = lim(Fi(X)). Since finite limits commute with filtered colimits in
Set (and in fact in Ab as well), it follows that f∗ commutes with all finite limits. Therefore f∗ is left-exact, and
hence is an exact functor.

Similarly, we see that f∗ : AbShvét(S) → AbShvét(S
′) is an exact functor whereas f∗ : AbShvét(S

′) →
AbShvét(S) is only left-exact.

Remark 1.31. In general, one should not expect the push-forward to be right-exact.

We do not prove the following theorem; see [Con].

Theorem 1.32 (Topological Invariance of the Étale Site). Suppose f : S′ → S is a universal homeomorphism
(i.e. for any base change T → S, the induced map S′ ×S T → T is a homeomorphism; or equivalently, it is
affine, universally closed, universally injective and surjective). Then,

1. the categories Shvét(S
′) and Shvét(S) are equivalent, where the functors f∗ : Shvét(S

′) → Shvét(S) and
f∗ : Shvét(S)→ Shvét(S

′) are inverse equivalences.

2. the sites Schét
S and Schét

S′ are equivalent via the functor Schét
S → Schét

S′ , X 7→ X ×S S′.
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1.8 Locally Constant and Constructible Sheaves

Definition. Suppose A is an arbitrary set. The constant sheaf on A is a sheaf in Shvét(S) isomorphic to the
sheaf AS given by the sheafification of the pre-sheaf (Schét

S )op → Set, U 7→ A. Equivalently, the constant sheaf
on A is the sheaf represented by ta∈AS.

Remark 1.33. Notice that if f : S′ → S is an arbitrary map of schemes, then we have a natural isomorphism

f∗AS
∼= AS′ .

For this reason, it is usual to write A for the sheaf AS .

Remark 1.34. If S is connected, there is a natural bijection

AS(S) ∼= HomS

(
S,
⋃
A∈S

S

)
∼= A,

natural in both S and A.

Remark 1.35. The constant sheaves functor Set→ Shvét(S), A 7→ AS is left-adjoint to the global sections functor
F 7→ F(S). Indeed, if we have a morphism AS → F then we automatically have a map A = AS(S) → F(S).
On the other hand, suppose we are only given a map s : A → F(S). Then, we have a map A → F(U) for
all étale U → S by simply composing s with the map F(U → S) : F(S) → F(U). We thus have a pre-sheaf
morphism which uniquely induces a canonical sheaf morphism AS → F .

In particular, we see that the constant sheaves functor is right exact while the global sections functor is left
exact.

Definition. A sheaf F ∈ Shvét(S) is locally constant if there exists an étale cover {Si → S}i∈I such that each
F|Si is a constant sheaf. If in addition each of the sets F(Si) (the set corresponding to F|Si , i.e. F|Si = F(Si)

Si
)

is finite, then F is said to be locally constant constructible (abbreviated lcc). Let the (full sub-)category of lcc
sheaves be denoted by Shvlccét (S).

Theorem 1.36 (Classification of LCC Sheaves). The functor (−)
S

: Schét
S → Shvét(S), X 7→ XS restricts to an

equivalence of categories between finite étale S-schemes and lcc sheaves on Sét. In other words, an étale sheaf
F on S is lcc if and only if there exists a finite étale S-scheme X such that F ∼= XS.

For the proof, see [Con, Theorem 1.1.7.2].
We can extend this theorem slightly in case F is an abelian étale sheaf (c.f. [Tam94, II.9.2.3] and [Tam94,

II.9.3.3]).

Proposition 1.37. If F ∈ AbShvét(S) is LCC, then there exists a unique commutative étale group scheme
G ∈ Schét

S such that F = GS. If in addition F has finite stalks, then G → S is finite. The sheaf F is
constructible if and only if G→ X is finitely presented.

We now discuss a corollary to the classification of LCC sheaves in the special case of SpecR for R a Dedekind
domain.

Definition. Suppose K is the field of fractions of a Dedekind domain R. Let p be a non-zero prime of R; then
Gal(K̄p/Kp) embeds into Gal(K̄/K). The inertia subgroup Ip of Gal(K̄/K) is the subgroup Gal(K̄p/K

unr
p ) of

Gal(K̄f/Kf) ⊂ Gal(K̄/K) corresponding to the maximal unramified extension of Kp.
A Galois action Gal(K̄/K) on a set S is said to be unramified at p if the inertia subgroup Ip acts trivially

on S. In this case, we have an obvious induced action of Gal(K̄/K)/Ip on the set S. Restricting to the
decomposition group Gp of p, we then get an action of Gp/Ip = Gal(K̄p/Kp) on S.

Proposition 1.38. Suppose K is the field of fractions of a Dedekind domain R, and suppose i : SpecK →
SpecR the map corresponding to the inclusion R ↪→ K. Then, the functor

Shvlccét (SpecR)→ Shvlccét (SpecK), F 7→ i∗F

is a fully faithful functor (i.e. is a bijection on hom-sets) with essential image equal to the category of those
finite discrete Gal(K̄/K)-sets that are unramified at all closed points of SpecR.

In particular, if G is an lcc sheaf on Schét
SpecK , then its associated continuous representation of Gal(K̄/K)

on a finite set is unramified at all places of R if and only if G extends to an lcc sheaf over Schét
SpecR.
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Proof. That the functor is fully faithful is clear; it suffices to compute its essential image. By the classification
theorem, an étale lcc sheaf on SpecR is of the form X for some finite étale SpecR-scheme X. Then, the
pull-back along i is of the form XK where XK = X ×SpecR SpecK is the base change to K; it is obvious that
XK is a finite étale SpecK-scheme. The Galois action corresponding to a finite étale K-scheme XK is precisely
the action of GK := Gal(K̄/K) on XK(Spec K̄) = HomSpecK(Spec K̄,XK). Hence, we need to show that given
a finite étale K-scheme XK the natural action of GK on XK(Spec K̄) is unramified at all places of R if and
only if we can find a finite étale R-scheme X (functorial in XK) such that XK = X ×SpecR SpecK.

Now, XK is a finite étale K-scheme if and only if XK
∼=
⊔r
j=1 SpecKj for some finite separable extensions

Kj/K. Then, we have

XK(Spec K̄) =

r⊔
j=1

HomSpecK(Spec K̄,SpecKj) =

r⊔
j=1

HomK(Kj , K̄).

Notice that GK is unramified on XK(Spec K̄) if and only if the restriction of GK is unramified on each
HomK(Kj , K̄). Thus, it suffices to consider a single finite separable extension L/K. In this case, we claim
that we can choose X to be SpecRL where RL is the integral closure of R in L. It thus suffices to show that
SpecRL → SpecR is étale if and only if the GK action on HomK(L, K̄) is unramified everywhere. However,
since RL is the integral closure of R, we know that RL is flat (in fact, free) over R. On the other hand, the
kernel of the action map of GK on HomK(L, K̄) is precisely the Galois group of the Galois closure of L over K.
Hence, we need to show that SpecRL → SpecR is unramified if and only if the Galois closure of L is contained
in the maximal unramified extension of K. It is easily seen that both of these statements are equivalent to
asking that L/K be an everywhere unramified extension (i.e. every non-zero prime ideal of R is unramified in
RL).

We finish this section with some statements about constructible sheaves. We do not prove anything here
since it is not clear to me that this is actually useful just yet; for proofs, see [Con].

Definition. Suppose S is a Noetherian topological space. A stratification of S is a finite set {Si} of pair-wise
disjoint non-empty subsets Si that are locally closed in S, satisfy

⋃
i Si = S, and the closure of each Si is a

union of Sjs. The Sis are the strata of the stratification.
If S is a Noetherian scheme, then a sheaf F ∈ Shvét(S) is constructible if there exists a stratification {Si}

of the underlying Zariski topological space of S such that the restriction F|Si to each stratum is lcc.

Proposition 1.39 (Local Nature of Constructibility). Suppose S is a Noetherian scheme with étale cover {Ui}.
If F ∈ Shvét(S) is a sheaf such that F|Ui is a constructible sheaf on Ui for all i, then F is constructible.

Constructible sheaves are important due to the following result, which allows one to generalize statements
about constructible sheaves to statements about arbitrary sheaves.

Proposition 1.40. Suppose S is a Noetherian scheme.

1. Every sheaf in Shvét(S) is the filtered direct limit of its constructible subsheaves, and subsheaves of con-
structible sheaves are constructible.

2. A sheaf in AbShvét(S) such that each of its sections is locally killed by a non-zero integer is the filtered
direct limit of its constructible abelian subsheaves.

3. A sheaf in AbShvét(S) is Noetherian (i.e. its subobjects satisfy the ascending chain condition) if and only
if it is constructible, provided that it is torsion.

We now give some standard examples of constructible sheaves.

Example 1.41. If X → S is a quasi-compact étale map to a Noetherian scheme S, then XS is constructible.

Example 1.42. Using Noetherian induction, one can show that the pull-back, image under a map, and finite
limits of constructible sheaves are constructible.

Also, if j : U → S is a quasi-compact étale map to a Noetherian scheme S, then j! sends constructible
sheaves to constructible sheaves.

1.9 Stalks

For a k-point x ∈ S(Spec k) (i.e. x : Spec k → S is a map) and an étale sheaf F ∈ Shvét(S), denote by Fx the
pull-back x∗F ∈ Shvét(Spec k).
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Definition. A geometric point of Schét
S (or of S) is a map s̄ : Spec k → S (i.e. a k-point of S) for a separably

closed field k. In this case, the category Shvét(Spec k) is naturally equivalent to Set, and so we may consider
Fs̄ to be a set. A geometric point thus induces an exact functor F 7→ Fs̄ from Shvét(S)→ Set, called the fibre
functor or stalk functor at s̄. Since pull-backs have a right-adjoint (namely the push-forward), the stalk functor
commutes with arbitrary colimits.

Two geometric points s̄ and s̄′ of S are equivalent when their physical image points in S are the same, i.e.
their associated fibre functors are (non-canonically) isomorphic to each other.

An étale neighbourhood of a geometric point s̄ ∈ S(Spec k) is an étale map U → S equipped with a map
u : Spec k → U whose composite with U → S is s̄ (i.e. s̄ factors through U → S).

Lemma 1.43. Let F be an arbitrary pre-sheaf on S. Suppose s̄ : Spec k → S (k separably closed) is a geometric
point whose image lies in the underlying set of S (i.e. is an honest point of S), then the natural map(

colim
(U,u) étale nbd of s̄

F(U)

)
→ (Fsh)s̄ =

(
s̄∗Fsh

)
(Spec k)

is a bijection, the colimit (in sets) taken over the category of étale neighbourhoods of s̄.

Proof. Note first that, due to the sheafification-forgetful adjunction, if G is a pre-sheaf on Spec k with k separably
closed, then (G)sh(Spec k) = G(Spec k). In particular, (s̄∗F)(Spec k) = s̄−1F(Spec k) where now s̄−1F is only
a pre-sheaf. The lemma then follows immediately from the construction of s̄−1F .

Corollary 1.43.1. Keep notation as above. Then, two elements a, b ∈ F(S) are equal in some étale neighbour-
hood of s̄ if and only if their images in Fs̄ coincide.

While the lemma and its corollary are trivial, they immediately yield the following result just as in ordinary
sheaf theory.

Proposition 1.44. Suppose Σ is set of geometric points whose images cover S set-theoretically.

• A map ϕ : F → G in Shvét(S) is epic (resp. monic, resp. an isomorphism) if and only if the pull-back
ϕs : Fs → Gs is surjective (resp. injective, resp. bijective) for all s ∈ Σ.

• Two maps ϕ,ψ : F → F in Shvét(S) are equal if and only if their pull-backs ϕs and ψs are equal for all
s ∈ Σ.

Hence, just as in ordinary sheaf theory, one may work with étale sheaves stalk-locally. See [Tam94, Chapter
2, Theorem (5.6)] for a proof.

Proposition 1.45. Fix a geometric point s̄ : Spec k̄ → S.

1. The functor F 7→ Fs̄ is exact and commutes with arbitrary colimits.

2. If v : Spec k̄ → Spec k̄ is an S-morphism of geometric points s̄ : Spec k̄ → S, s̄′ : Spec k̄ → S, then
Fs̄ ∼= Fs̄′ .

3. If f : S → S′, then s̄ is naturally a geometric point of S′, and moreover (f∗F)s̄ ∼= Ff◦s̄ for all sheaves F
on Schét

S′ .

See [Tam94, Chapter 2, Proposition (5.2)] for a proof.

1.10 Henselization

We follow [Mil80] and [Tam94] in this section, though the definition is taken from [FK88]. For proofs see [Mil80].
Recall that a ring homomorphism A → B is finite if B is finitely generated as an A-module. A local ring

homomorphism A→ B is quasi-finite if A/mA → B/(mAB) is finite.

Definition. A local ring A is Henselian if every local quasi-finite homomorphism from A to a localization of a
finitely generated A-algebra is finite.

A Henselian ring is strictly Henselian if the residue class field A/m is separably algebraically closed.

This definition is slightly hard to work with. The following characterizations are far more useful.

Definition. We say that a local ring (A,m) satisfies Hensel’s Lemma if, for every monic polynomial P ∈ A[x]
such that upon reducing modulo m we have P (x) ≡ Q̄(x)R̄(x) for some relatively prime monic polynomials
Q̄, R̄ ∈ (A/m)[x], there exist monic polynomials Q,R ∈ A[x] such that P = QR in A[x] and modulo m we have
Q ≡ Q̄ and R ≡ R̄.
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Proposition 1.46. For a local ring (A,m), the following are equivalent.

• A is Henselian.

• A satisfies Hensel’s lemma.

• Any finite A-algebra is a product of local rings (in such a case, a finite A-algebra B is of the form
B =

∏
mi
Bmi where the product ranges over all maximal ideals mi of B.)

• If f : X → SpecA is quasi-finite and separated, then X ∼=
⊔n
i=0Xi where m /∈ f(Y0), f |Xi : Xi → SpecA

is finite, and Xi is the spec of a local ring.

• If f : X → SpecA is étale and there is a point x ∈ X such that f(x) = m and κ(x) = κ(m) ∼= A/m, then
f has a section s : SpecA→ X.

• Suppose f1, ..., fr ∈ A[x1, ..., xr] are such that there exists an a = (a1, ..., ar) ∈ (A/m)r such that f̄i(a) = 0
for all 1 ≤ i ≤ r, and det

(
∂fi
∂xj

(a)
)
6= 0, then there exists b ∈ An such that b̄ = a and fi(b) = 0 for

1 ≤ i ≤ r.

Corollary 1.46.1. Any (topologically-)complete local ring is Henselian.

Corollary 1.46.2. If A is Henselian then so is any finite local A-algebra B and any quotient A/I of A.

Corollary 1.46.3. If f : Y → X is an étale map of schemes such that κ(f(y)) = κ(y) for some y ∈ Y , then
the map ÔX,f(y) → ÔY,y between the completions of the local rings is an isomorphism.

Proposition 1.47. If A is Henselian, then the functor B 7→ B ⊗A (A/m) induces an equivalence between the
category of finite étale A algebras B and the category of finite étale (A/m)-algebras.

Proposition 1.48. Let A be a local ring. The following are equivalent.

1. A is strictly-Henselian.

2. A is Henselian and all finite étale A-algebras are trivial, i.e. isomorphic to An for some n.

3. If A→ B is a local homomorphism from A to the localization B of an étale A-algebra, then A→ B is an
isomorphism.

4. If X → S = SpecA is étale and if x is a point in the closed fibre Xm, there exists a section u : SpecA→ X
such that u(m) = x.

Corollary 1.48.1. A strictly Henselian ring has no finite étale extensions apart from itself.

The following generalizes the previous proposition.

Proposition 1.49. Suppose X is a proper scheme over a Henselian local ring A, and let X0 be the closed fibre
of X. The functor Y 7→ Y ×X X0 induces an equivalence between the category of schemes Y finite and étale
over X, and the category of schemes finite and étale over X0.

Definition. The Henselization Ah of a local ring A is a Henselian (Noetherian) local ring Ah (with maximal
ideal mh such that Ah/mh ∼= A/m) equipped with an inclusion A ↪→ Ah such that any map A → B for B
Henselian factors through A ↪→ Ah.

We can similarly define the strict-Henselization Ash of A.

Remark 1.50. The Henselization of a local ring always exists, and can be thought of as the intersection of all
Henselian local subrings B in Â (the mA-adic completion of A) such that mA = A ∩mB .

Remark 1.51. Notice that the inclusion A ↪→ Ash into the strict-henselization factors as A ↪→ Ah ↪→ Ash.

Example 1.52. Suppose (A,m) is a normal Noetherian local ring with field of fractions K. Let K̄ be separable
closure of K, and let B be the integral closure of A in K̄. Let n be some maximal ideal of B containing mB.
The decomposition group D = Dn is

D = {σ ∈ Gal(K̄/K) : σn = n}.

The ring BD of elements of B fixed by D is the integral closure of A in the fixed field K̄D, and nD is a prime
ideal in BD. Since A ⊂ K, we have A ⊂ BD. It can be checked (c.f. [Mil80]) that the localization (BD)nD is
precisely the Henselization of A.

If instead we use the inertia subgroup

I = In = {σ ∈ Gal(K̄/K) : σx = x ∀x ∈ n}

of K̄/K, rather than the decomposition group D, then (BI)nI is the strict Henselization Ash of A.
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Example 1.53. If k is a field and A the localization of k[x1, ..., xn] at the ideal 〈x1, ..., xn〉, then Ah is the integral
closure of A in k[[x1, ..., xn]], i.e. it is the ring of formal power series P ∈ k[[x1, ..., xn]] such that P is algebraic
over A.

Example 1.54. Both Henselization and strict-Henselization commutes with quotients, i.e. (A/m)h ∼= Ah/(mAh)
and (A/m)sh ∼= Ash/(mAsh)

Proposition 1.55. The henselization Ah as well as the strict-henselization Ash of a local ring A are flat over
A.
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2 Cohomology

2.1 Constructing the Étale Fundamental Group

Throughout, we let S be an arbitrary connected scheme and s̄ a geometric point of S.

Lemma 2.1 (Rigidity of Pointed Étale Covers). Suppose S′ is a connected étale S-scheme, and choose a
geometric point s̄′ of S′ above s̄ where WLOG s̄′ and s̄ have the same residue field k. Suppose S′′ is a separated
étale S-scheme. If f, g : S′ → S′′ are two S-maps such that f(s̄′) = g(s̄′) in S′′(k), then f = g.

Remark 2.2. When S′′ = S′, this is analogous to the statement that deck transformations of a connected
covering are uniquely determined by the image of a single point.

Proof. Since S′′ is separated, the diagonal map S′′ → S′′×S S′′ is a closed immersion. However, S′′ is étale over
S and so S′′ → S′′×S S′′ is an étale map, and in particular, is an open map. Thus the diagonal S′′ ↪→ S′′×S S′′
is a connected component of S′′ ×S S′′. Since S′ is connected and the image of S′ under (f, g) : S′ → S′′ ×S S′′
intersects the diagonal at the geometric point s̄′, the image of S′ under (f, g) must be contained in the diagonal.
Hence f = g.

Suppose S′ is a connected finite étale S-scheme. Since S and S′ are both connected, the degree of the map
S′ → S is constant and so it makes sense to talk about the degree of S′ over S. If deg(S′/S) = n, then there
are exactly n geometric points in the fibre over s̄. The rigidity lemma then implies that #Aut(S′/S) ≤ n
where Aut(S′/S) is the set of S-isomorphisms from S′ → S′; moreover, the S-automorphism of S′ is uniquely
determined by where it sends a fixed geometric point of S′.

Definition. A finite étale map S′ → S between connected non-empty schemes is Galois or a (finite) Galois
covering if #Aut(S′/S) = deg(S′/S). In other words, S′ is Galois over S if and only if for every geometric point
s̄′ of S′ lying above a geometric point s̄ of S, there exists an automorphism f ∈ Aut(S′/S) such that f(s̄) = s̄′.

In this case, the Galois group of S′ is defined to be the opposite group Gal(S′/S) := Aut(S′/S)op. The
Galois group thus acts simply transitively on geometric fibres.

Example 2.3. Suppose R is a Dedekind domain with fraction field K, and suppose K ′ is a finite separable
extension of K with R′ the integral closure of R in K ′. Then, one can check that SpecR′ → SpecR is a finite
Galois covering if and only if K ′/K is a Galois extension of fields and R′ is everywhere unramified over R.
Notice that R′ being everywhere unramified over R is required for the map SpecR′ → SpecR to be an étale
map.

Since Aut(S′/S) acts on S′ on the left, it follows that Gal(S′/S) acts on S′ from the right.

Lemma 2.4. Suppose S′ → S is a finite Galois covering with Galois group G, then the action map S′ ×G→
S′ ×S S′ given by (s′, g) 7→ (s′, s′g) is an isomorphism of finite étale S′-schemes.

Conversely, if there is a group G acting on S′ over S on the right such that the action map S′×G→ S′×SS′
given by (s′, g) 7→ (s′, s′g) is an isomorphism of finite étale S′-schemes, then S′ → S is a finite Galois covering
with Galois group G.

Remark 2.5. This is a generalization of the usual isomorphism

L⊗K L ∼=
∏

g∈Gal(L/K)

L, x⊗ y 7→ (x · g(y))g∈Gal(L/K)

for L/K a finite Galois extension from Galois theory.

Proof. We use the structure map proj1 : S′×S S′ → S′ to be the structure map of S′×S S′ over S′. Let |G| = n.
Since S′ → S is a finite étale map of degree n, base changing implies that S′ ×S S′ → S′ is also a finite étale
map of degree n. Notice that S′ × G is the finite disjoint union of S′s indexed by G, and so S′ × G is also a
finite étale S′-scheme of degree n over S′. In particular, it follows that the action map S′×G→ S′×S S′, being
a scheme-map of finite étale S′-schemes, is finite étale as well. The rigidity lemma implies that the fibre over a
geometric point of S′ ×S S′ is a singleton, and so the action map is a finite étale map of degree 1. Hence the
action map must be an isomorphism.

For the converse, note that G is a subgroup of Gal(S′/S), and the requirement that S′ × G → S′ ×S S′
being an isomorphism implies that, looking at cardinalities of fibres, we have |Gal(S′/S)| ≥ |G| = deg(S′/S).
However deg(S′/S) ≥ |Gal(S′/S)|, and hence S′ is Galois over S.
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Lemma 2.6. Suppose S′, S′′ are connected finite Galois covers of S, and suppose π : S′′ → S′ is an S-map
(such a map is unique by rigidity, noting that finite schemes are separated). Then, π induces a surjective map

π# : Aut(S′′/S) � Aut(S′/S)

which for any f ′′ ∈ Aut(S′′/S) satisfies
π ◦ f ′′ = (π#f ′′) ◦ π.

Proof. Fix an arbitrary geometric point s̄′′ of S′′ lying above s̄. Then π sends s̄′′ to some geometric point s̄′ of
S′ lying above s̄. We need to show that for any f ′′ ∈ Aut(S′′/S) we can find a unique f ′ ∈ Aut(S′/S) such that

S′′ S′′

S′ S′

f ′′

π π

f ′

.

Indeed, notice that π ◦ f ′′(s̄′′) ∈ S′s̄′ . Since S′ is Galois over S, we can find a unique f ′ ∈ Aut(S′/S) such that
f ′(s̄′) = π ◦ f ′′(s̄′′) ∈ S′s̄′ . Thus (f ′ ◦ π)(s̄′′) = (π ◦ f ′′)(s̄′′) where f ′ ◦ π, π ◦ f ′′ are S-maps from S′′ to S′. The
rigidity lemma then implies that f ′ ◦ π = π ◦ f ′′.

Hence, fixing a map π : S′′ → S′ in the category of connected finite étale S-schemes, there is an induced
injective map

Aut(S′′/S)→ Aut(S′/S).

Suppose now that f ′ ∈ Aut(S′/S). Then f ′(s̄′) is a geometric point of S′ over s̄. Since π is surjective (as π is
finite étale and thus both closed and open, and S′ is connected), we can lift s̄′ to a geometric point of S′′, and
the same argument as above gives a (not necessarily unique) automorphism f ′′ ∈ Aut(S′′/S).

Hence, for any map π : S′′ → S′ of connected finite Galois covers of S, we have a surjective map

Gal(S′′/S) � Gal(S′/S).

Moreover, the proof shows that this surjective map is canonical when we work with pointed connected finite
Galois covers of S, i.e. we fix a geometric point of S and require compatibility with lifts of this geometric point.

Definition. The étale fundamental group of S based at s̄ is the profinite group

πét
1 (S, s̄) := lim

(S′,s̄′)
Gal(S′/S)

where the limit is taken over all connected finite Galois covers S′ → S with a fixed geometric point s̄′ over s̄.
When no confusion is to be caused, we drop the ‘ét’ in the superscript and simply write π1 for the étale

fundamental group.

The surjectivity of the maps Gal(S′′/S)→ Gal(S′/S) implies that π1(S, s̄)→ Gal(S′/S) is surjective for all
pointed connected finite Galois covers (S′, s̄′)→ (S, s̄).

There is an equivalent way to think about the étale fundamental group (see [Mil80, Chapter 1, Section 5]).
As before suppose S is a connected scheme and s̄ : Spec k → S (k = k̄) a geometric point of S. Consider the

category Schét,fin
S of finite étale S-schemes (these are necessarily surjective for S connected, since étale maps are

open whereas finite maps are closed). Consider the functor F : Schét,fin
S → Sets given by F = HomS(s̄,−). In

other words, F is the functor of geometric points of a scheme. This is a covariant functor.
It is a fact that this functor is strictly pro-representable, i.e. there exists a filtered diagram (Xi, φij)i∈I in

Schét,fin
S in which the transition maps φij : Xj → Xi (for i → j) are epimorphisms, and there exist elements

x̄i ∈ F (Xi) = HomS(Spec k,Xi) such that x̄i = φij ◦ x̄j and such that the natural transformation

α : colimi∈IHomS(Xi,−)⇒ F, αY : colimi∈IHomS(Xi, Y )→ F (Y ) = HomS(Spec k, Y ), αY (g : Xi → Y ) = g◦fi.

induced by the fi is a natural isomorphism. This system of Xi and transition maps φij plays the role of a
‘universal covering space’ for S. One sees that

πét(S, s̄) = lim
i∈I

Gal(Xi/S).
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2.2 Some Properties of πét
1

Proposition 2.7. The étale fundamental group πét
1 defines a covariant functor from the category of pointed

connected schemes to the category of pro-finite groups.

Proof. Suppose f : (T, t̄) → (S, s̄) is a morphism of connected pointed schemes. For any pointed connected
Galois cover (S′, s̄′)→ (S, s̄) of degree n with k(s̄′) = k(s̄), the fibre product S′T := S′ ×S T is a degree n finite
étale T -scheme with a canonical point t̄′ = t̄×s̄ s̄′. Since S′T is finite étale over T , there are only finitely many
connected components each of which is thus both open and closed in T . Suppose T ′ is the connected component
containing t̄′. Then T ′ → T is a connected finite étale cover.

Now, notice that Gal(S′/S) acts transitively on geometric fibres of S′ → S, and so via pull-back must also act
transitively on geometric fibres of S′T → T . Let H ⊆ Gal(S′/S) be the stabilizer of T ′ over T (here Gal(S′/S)
acts on the connected components of S′T over T via pull-back). By connectedness of T ′, any g ∈ Gal(S′/S)
that sends t̄′ to a geometric point in T ′ must send all of T ′ to T ′, and so g ∈ H. Transitivity of Gal(S′/S)
on geometric fibres then implies that H itself is transitive on geometric fibres of T ′ → T . Hence T ′ → T is a
connected Galois cover with Galois group H. The continuous composite

π1(T, t̄) � Gal(T ′/T ) ∼= H ⊂ Gal(S′/S)

is compatible with the connecting maps Gal(S′′/S)→ Gal(S′/S) induced by maps S′′ → S′ of connected Galois
covers of S. Passing to the limit we get a continuous map

π1(f) : π1(T, t̄)→ π1(S, s̄).

It is moreover easy to see that π1 respects composition in f .

Example 2.8. Suppose S = Spec k for a field k, and pick a separable closure s̄ : Spec k̄ → Spec k. Then,
connected finite Galois covers of k are precisely Spec s of finite Galois extensions k′/k. Moreover, via Spec ,
we have a canonical isomorphism between Gal(Spec k′/Spec k) = Aut(Spec k′/Spec k)op and Gal(k′/k). Since
Gal(k̄/k) is the profinite group defined by taking the limit over all finite Galois extensions k′, we then see that

π1(S, s̄) ∼= Gal(k̄/k)

canonically. Now suppose k′ is an arbitrary field extension of k with a choice of separable closure k̄′, then we
have the following commutative diagram

π1(Spec k, s̄) π1(Spec k′, s̄′)

Gal(k̄/k) Gal(k̄′/k′)

π1(Spec (k→k′))

where the bottom row is the usual canonical map coming from Galois theory.

Proposition 2.9 (Connectivity Criterion via πét
1 ). Suppose f : X → Y is a map of connected schemes. Pick a

geometric point x̄ of X and define ȳ = f(x̄). The map π1(f) : π1(X, x̄) → π1(Y, ȳ) is surjective if and only if
X ×Y Y ′ is connected for all connected finite étale covers Y ′ → Y .

Proof. Notice that the image of π1(X, x̄) under π1(f) is closed, since profinite groups are always compact and
Hausdorff. Thus, π1(f) is surjective if and only if it is dense, i.e. if and only if for all connected pointed finite
étale covers (Y ′, ȳ′) of (Y, ȳ) the composite

π1(X, x̄)→ π1(Y, ȳ) � Gal(Y ′/Y )

is surjective. However, from the proof of the covariant functoriality of π1, we know that the above composite
factors as

π1(X, x̄) � Gal(X ′/X) ↪→ Gal(Y ′/y)

where X ′ is the connected component of X×Y Y ′ containing the geometric point x̄′ = (x̄, ȳ′). Hence, we see that
π1(f) is surjective if and only if for all connected pointed finite étale covers (Y ′, ȳ′) the finite groups Gal(X ′/X)
and Gal(Y ′/Y ) have the same order. The order of the Galois groups is the degree of the covering, and so π1(f)
is surjective if and only if deg(X ′/X) = deg(Y ′/Y ). However, notice that X ′ is an open subscheme of X ×Y Y ′
and so

deg(X ′/X) ≤ deg(X ×Y Y ′/X) = deg(Y ′/Y )

with equality if and only if X ′ = X ×Y Y ′, i.e. X ×Y Y ′ is connected. The result follows.
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Example 2.10. Suppose X is an irreducible normal scheme with function field K. Fixing a separable closure K̄,
we have a geometric point x̄ : Spec K̄ → SpecK ↪→ X. By functoriality of π1, the inclusion of the generic point
SpecK ↪→ X yields the continuous map

Gal(K̄/K) = π1(SpecK, x̄)→ π1(X, x̄).

It is a fact that X ′ ×SpecX SpecK is connected for all connected finite étale X-schemes X ′ (see [Con]). Thus
the connectivity criterion implies that π1(f) is surjective. This has two consequences:

1. It turns out that the kernel of π1(f) is the Galois group Gal(K̄/L) where L is the maximal subextension
of K̄/K such that the normalization of X in each finite subextension of L is finite étale over X. For
instance, if X = SpecR for R a Dedekind domain, then L/K is the maximal extension that is everywhere
unramified over R (unramified in the usual number theoretic sense).

2. If X is irreducible and normal and U ⊂ X is a Zariski open containing the geometric point x̄, then
π1(U, x̄)→ π1(X, x̄) is surjective.

Theorem 2.11 (Grothendieck). If S is connected, then there is a canonical equivalence of categories between
the category FSchét(S) of finite étale morphisms S′ → S and the category π1(S, s̄)FSet of finite discrete (left)
π1(S, s̄)-sets, given by S′ 7→ S′(s̄). Moreover, under this equivalence connected covers correspond to the finite
sets with transitive π1(S, s̄)-action.

This equivalence is also functorial in (S, s̄), i.e. if f : (T, t̄) → (S, s̄) where T is also connected, then the
natural equality of sets (T ×S S′)(t̄) = S′(s̄) respects the π1(T, t̄)-actions, where π1(T, t̄) acts on S′(s̄) through
π1(f).

Remark 2.12. This is a vast generalization of the equivalence of the category of finite étale k-algebras and the
category of discrete Gal(k̄, k) sets.

As a corollary of this theorem of Grothendieck and the classification of lcc sheaves, we have the following
equivalence.

Corollary 2.12.1. Suppose S is a connected scheme with a geometric point s̄. The fibre-functor F 7→ Fs̄ = s̄∗F
sets up an equivalence between

• the category Shvlccét (S) of lcc sheaves of sets on Schét
S , and the category π1(S, s̄)FSet of finite discrete left

π1(S, s̄)-sets; and

• the abelian category AbShvlccét (S) of lcc sheaves of abelian groups on Schét
S , and the category π1(S, s̄)FMod

of finite discrete left π1(S, s̄)-modules.

This equivalence is moreover functorial in (S, s̄).

Example 2.13. Let X be a connected scheme. Let K be some subextension of k̄ over k, and suppose x :
SpecK → X be a K-point. Pick also a geometric point x̄ : Spec k̄ → X over x. If F ∈ Shvét(X), then
we have Fx := x∗F ∈ Shvét(SpecK). The choice of x̄ gives us a canonical equivalence of categories between
Shvét(SpecK) and Gal(k̄/K) sets, by sending Fx to Fx(x̄).

However, if F is moreover lcc, then the pointed map (x, x̄) → (X, x̄) induces via functoriality of π1 a
continuous map of profinite groups Gal(k̄/K) = πét

1 (SpecK, x̄)→ π1(X, x̄). Thus, the finite discrete Gal(k̄/K)-
set Fx(x̄) is canonically constructed from the finite discrete π1(X, x̄)-set F(x̄) via Gal(k̄/K) → π1(X, x̄). We
recover the equivalence of categories between Shvét(SpecK) and discrete Gal(k̄/K) sets

Proposition 2.14. Suppose X is a connected smooth algebraic curve over a perfect field k, and let K be the
field of rational functions on X. Fix a separable closure K̄ of K and write x̄ : Spec K̄ → SpecK corresponding
to the inclusion K ⊂ K̄. Then, πét

1 (X, x̄) is the Galois group of the maximal unramified subextension of K̄/K.

See [Tam94, p. II.9.2.4] for the proof.

2.3 Étale Cohomology Groups

Recall that the category AbShvét(S) is an abelian category, and the global-sections functor AbShvét(S) →
Ab,F 7→ F(S) is left-exact.

Lemma 2.15. Suppose C and D are abelian categories, and F : C → D is a functor with an exact left-adjoint
G : D → C. Then, F preserves injectives.
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Proof. Let I be an injective in C. Notice that FI is an injective if and only if HomD(−, F I) is an exact functor.
However, by the (G,F )-adjunction, HomD(−, F I) is an exact functor if and only if HomC(G(−), I) is an exact
functor. Since G is assumed to be exact and I is an injective, it follows that HomC(G(−), I) is indeed exact.
Therefore FI is an injective.

Lemma 2.16. The abelian category AbShvét(S) has enough injectives.

Proof. We follow the proof in [Mil80].For any field k with k = k̄, the category AbShvét(Spec k) is equivalent to
the category Ab via the global-sections functor; in particular, AbShvét(Spec k) has enough injectives for all k
with k = k̄. Now, consider an arbitrary F ∈ AbShvét(S). Then, for all geometric points x̄ : Spec k → S of S,
we have x̄∗F ∈ AbShvét(Spec k), and so there exists an injective Ix̄ ∈ AbShvét(Spec k) and a monomorphism
x̄∗F ↪→ Ix̄. Since x̄∗ is an exact functor and is left-adjoint to x̄∗, it follows that x̄∗Ix̄ is an injective in
AbShvét(S).

Define the sheaves
F∗ :=

∏
x∈S

(x̄)∗
(
x̄∗F

)
and I :=

∏
x∈S

(x̄)∗Ix̄

where for each x ∈ S we pick a geometric point x̄ : Specκ(x)→ Specκ(x)
x−→ S. Since x̄∗F ↪→ Ix̄ is an injection,

and since §∗ is left-exact, we have that F∗ ↪→ I. Also, by looking at stalks, we see that F ↪→ F∗. Hence,
we have found a monomorphism F ↪→ I. By the previous argument, we know that all the x̄∗Ix̄ are injectives.
Since the product of injectives is an injective, it then follows that I is an injective.

Recall that push-forwards are left-exact as well.

Definition. Étale cohomology H•ét(S, ·) on AbShvét(S) is the (classical) right derived δ-functor of the left-exact
global-sections functor F 7→ F(S).

Given a morphism f : X → S of schemes, the higher direct images R•f∗ is the (classical) right derived
δ-functor of f∗ : AbShvét(X)→ AbShvét(S).

Remark 2.17. More generally, we can consider the total derived functors

RΓ(S,−) : D+AbShvét(S)→ D+Ab

and
Rf∗ : D+AbShvét(X)→ D+AbShvét(S).

Example 2.18. Consider abelian sheaves on Schét
Spec k. Writing G = Gal(k̄/k), we know that AbShvét(Spec k) is

equivalent to the category of all G-modules.
If F corresponds to a module M under the correspondence given in Section 1.5, notice that Γ(Spec k,F) =

MG is the module of fixed points of M under G. Their right derived functors must then coincide under the
categorical equivalence described in Section 1.5. However, the right derived functor of Γ is precisely étale
cohomology, whereas the right derived functor of M 7→ MG is precisely Galois cohomology. Hence Galois
cohomology computes sheaf cohomology, and vice versa.

In particular, we can restate Hilbert’s Theorem 90 as follows

Proposition 2.19 (Hilbert’s Theorem 90). H1
ét(SpecK,Gm) = 0.

The following is a generalization of Hilbert’s Theorem 90, as a result of Tsen’s Theorem.

Proposition 2.20. Let K be a function field in one variable over an algebraically closed constant field. Then
Hq(SpecK,Gm) = 0 for all q ≥ 1.

The following lemma is an immediate consequence of the exactness of pull-backs.

Lemma-Definition. Given a morphism f : X → S of schemes, there is a unique natural transformation
f∗ : H•ét(S,−) → H•ét(X, f

∗(−)) extending the canonical map in degree 0, called the cohomological pull-back.
The cohomological pull-back behaves well with compositions via uniqueness and naturality, and by the fact that
usual pull-backs in degree 0 behave well.

Since push-forwards and the global sections functor carry injectives to injectives, we also have the following
result as a corollary to Grothendieck’s spectral sequence.
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Proposition 2.21 (Leray Spectral Sequence). Suppose f : X → S and h : S → S′ are maps of schemes. Then,
we have rightward oriented spectral sequences

Hp
ét(S,R

qf∗(−))⇒ Hp+q
ét (X,−), and Rph∗ ◦Rqf∗ ⇒ Rp+q(h ◦ f)∗.

In the language of derived categories, we in fact have equalities of derived functors

RΓ(S,−)◦Rf∗ = RΓ(X,−) : D+AbShvét(X)→ D+Ab and Rh∗◦Rf∗ = R(h◦f)∗ : D+AbShvét(X)→ D+AbShvét(S
′).

Proposition 2.22. Pull-backs by étale maps send injectives to injectives.

Proof. Let j : U → S be an étale map. Since j∗ is right-adjoint to j!, Lemma 2.15 implies that it is sufficient
to prove that j! is exact. It is already right-exact since it is a left adjoint. By construction of j!, one can check
that it is left exact.

Corollary 2.22.1. Suppose j : U → S is étale. For all n ≥ 0, the functor H•ét(U, j
∗(−)) : AbShvét(S)→ Ab is

(canonically equivalent to) the classical right derived functor of the left-exact functor AbShvét(S) → Ab,F 7→
F(U).

Proof. Notice that Hn
ét(U, j

∗(−)) is effaceable for all n ≥ 1, since for any F ∈ AbShvét(S) we can find an
injective sheaf I on S such that F ↪→ I, and since j∗I is injective it follows that H•ét(U, j

∗I) = 0. Thus,
H•ét(U, j

∗(−)) is also a universal δ-functor by Proposition A.4. Since we have

H0
ét(U, j

∗F) = Γ(U, j∗F) = F(U)

for all F ∈ AbShvét(S), it then follows from the universal property of universal δ-functors and of right derived
functors that H•ét(U, j

∗F) is the right derived functor of the left-exact functor F → F(U).

Remark 2.23. In fact, more is true. We have equalities of total derived functors

RΓ(U,−) ◦ j∗ = RΓS(U,−) : D+AbShvét(S)→ D+Ab,

where we denote by ΓS(U,−) : AbShvét(S)→ Ab the left-exact functor F 7→ F(U). This is a direct corollary of
the Grothendieck Spectral Sequence Theorem for derived categories, noting that j∗ : AbShvét(S)→ AbShvét(U)
is an exact functor and so Rj∗ = j∗.

Definition. Given U ∈ Schét
S , we denote by H•ét(U,−) the functor H•ét(U, j

∗(−)) (or equivalently, the classical
right derived functor of F 7→ F(U)).

Proposition 2.24. For any morphism f : X → S of schemes, and any F ∈ AbShvét(X), and for any n ≥ 0,
the sheafification of the pre-sheaf

(Schét
S )op → Ab, U 7→ Hn

ét(X ×S U,F)

is Rnf∗F .

Proof. Consider any injective resolution I• of F in AbShvét(X). By definition, Rnf∗F is the n’th cohomology
group of the complex of sheaves f∗I• in AbShvét(S). On the other hand, by the previous corollary we know that
the n’th cohomology group of the complex of groups I•(U×SX) is precisely Hn

ét(U×SX,F). Since sheafification
is exact, it commutes with the formation of cohomology, and so the sheafification of U 7→ Hn

ét(U ×S X,F) =
Hn(I•(U×SX)) coincides with the n’th cohomology group of the sheafification of U 7→ I•(U×SX) = f∗I•(U),
which is precisely U 7→ Rnf∗F(U). The result follows.

2.4 Čech Cohomology

Let U = {fi : Ui → S}i∈I be an étale cover for X. For any p+ 1-tuple (i0, ..., ip) of indices in I, write

Ui0 ×S · · · ×S Uip =: Ui0,i1,...,ip .

Suppose now P : (Schét
S )op → Ab is a pre-sheaf on Schét

S . The canonical projection

Ui0,...,ip → Ui0,...,̂ij ,...,ip
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(where the hat denotes omission) induces a restriction morphism P(Ui0,...,̂ij ,...,ip)→ P(Ui0,...,ij ,...,ip). Write this

morphism as res
i0,...,ip
j . We can now define a complex C•(U ,P) given by

Cp(U ,P) =
∏

i0,...,ip∈I
P(Ui0,...,ip)

and coboundary maps dp : Cp(U ,P)→ Cp+1(U ,P) which takes an element s = (si0,...,ip) ∈ Cp(U ,P) to

(dps)i0,...,ip+1
=

p+1∑
j=0

(−1)jres
i0,...,ij ,...,ip+1

j (si0,...,̂ij ,...,ip+1
).

Definition. The cohomology groups of the complex C•(U ,P) given above are called the Čech cohomology
groups Ȟp(U ,P) of the pre-sheaf P with respect to the covering U of X.

If P is a sheaf, then notice that

Ȟ0(U ,P) = ker

∏
i

P(Ui)→
∏
i,j

P(Uij), (si)i 7→ (si − sj)i,j

 ∼= P(S)

by the glueability axiom of sheaves. If P is not a sheaf, then we only have a canonical injection P(S) ↪→
Ȟ0(U ,P).

A second étale covering V = {gj : Vj → S}j∈J is a refinement of U if there is a map τ : J → I such that for
each j ∈ J , gj : Vj → S factors through fτj : Uτj → S. This map τ then induces maps τp : Cp(U ,P)→ Cp(V,P)
which sends s = (si0,...,ip) ∈ Cp(U ,P) to the p-cochain

(
(τps)j0,...,jp

)
where (τps)j0,...,jp is the image of sτj0,...,τjp

under the map P
(
Vj0 ×S · · · ×S Vjp → Uτj0 ×S · · · ×S Uτjp

)
.

The map τ• : C•(U ,P)→ C•(V,P) is in fact a chain map, and so we get an induced map on cohomology

ρV,U,τ : Ȟp(U ,P)→ Ȟp(V,P).

It can be checked (see [Mil80, Lemma 2.1] or [Tam94, Lemma 2.2.7]) that this map ρV,U,τ is in fact inde-
pendent of τ , and so for any refinement V of U we get a natural map on Čech cohomology

ρV,U : Ȟp(U ,P)→ Ȟp(V,P).

Definition. The Čech (étale) cohomology groups of the pre-sheaf P over S is the colimit

Ȟp
ét(S,P) = colim

U∈Covét(S)
Ȟp(U ,P).

Remark 2.25. Suppose now S′ → S is étale. Then, we can define the Čech complex C•(U/S′,P) for any open
cover U of S′ in the obvious way, and this is very clearly equal to the Čech complex C•(U ,P|S′). It follows that
Ȟp

ét(S
′,P|S′) is the same as Ȟp

ét(S
′,P).

We give a more homological-algebraic interpretation of Čech cohomology. Fix an étale cover U = {Ui →
S′}i∈I of S′, where S′ → S is an étale S-scheme. We define the (covariant) functor Ȟ0(U/S′,−) from abelian
pre-sheaves on Schét

S to Ab which to each pre-sheaf F assigns

Ȟ0(U/S′,F) := ker

∏
i

F(Ui) ⇒
∏
i,j

F(Ui ×S′ Uj)


=

{
(si) ∈

∏
i

F(Ui) : si|Ui×S′Uj = sj |Ui×S′Uj

}
.

This is the usual 0’th Čech cohomology group.

Proposition 2.26. The Čech cohomology groups Ȟ∗(U/S′,F) defined above are the right-derived functors (in
the category of pre-sheaves on Schét

S ) of Ȟ0(U/S′,F).

Proof. We follow the proof given in [Tam94]. It suffices to show that Ȟ∗(U/S′,−) as defined above is a universal
δ-functor. That Ȟ∗(U/S′,F) is a δ-functor is obvious, since for any exact sequence 0→ F ′ → F → F”→ 0 of
abelian pre-sheaves we get the obvious exact sequence of Čech complexes

0→ C•(U/S′,F ′)→ C•(U/S′,F)→ C•(U/S′,F ′′)→ 0.
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Since Ȟ∗(U/S′,−) is the usual cohomology of complexes, we get natural connecting morphisms δ : Ȟp(U/S′,F ′′)→
Ȟp+1(U/S′,F ′) making all the required diagrams commute. Hence Ȟ∗(U/S′,−) is a δ-functor.

We now show that each Ȟp(U/S′,−) is effaceable for all p ≥ 1. In other words, it suffices to show that
the cochain complex C•(U/S′, I) is an exact cochain complex for any injective abelian pre-sheaf I. For any
U ∈ Schét

S , define the abelian pre-sheaf ZU : (Schét
S )op → Ab by

ZU (X) =
⊕

HomS(X,U)

Z

on étale schemes X, i.e. ZU (X) is the free abelian group generated by the set HomS(X,U). For f : X → Y
the natural map (−) ◦ f : HomS(Y, U)→ HomS(X,U) induces a natural map ZU (Y )→ ZU (X). By a Yoneda
Lemma style argument, one can show that

Hom(ZU ,F) ∼= F(U)

for all abelian pre-sheaves F . It follows that

Cq(U/S′, I) =
∏

i0,...,iq

I(Ui0 ×S′ · · · ×S′ Uiq ) ∼=
∏

i0,...,iq

Hom(ZUi0×S′ ···×S′Uiq , I)

∼= Hom

 ⊕
i0,...,iq

ZUi0×S′ ···×S′Uiq , I

 .

Since I is injective, the cochain complex C•(U/S′, I) will be exact if the complex⊕
i

ZUi ←
⊕
i,j

ZUi×S′Uj ←
⊕
i,j,k

ZUi×S′Uj×S′Uk ← · · ·

is exact. By definition, since we are in the category of pre-sheaves, the above complex is exact if and only if the
complex ⊕

i

ZUi(X)←
⊕
i,j

ZUi×S′Uj (X)←
⊕
i,j,k

ZUi×S′Uj×S′Uk(X)← · · ·

is exact for all étale S-schemes X. Fix f ∈ Hom(X,S′). Define Homf (X,Ui) to be the set of morphisms

g : X → Ui such that the composition X
g−→ Ui → U is f . Then we have the partitions

Hom(X,Ui) =
⊔

f∈Hom(X,S′)

Homf (X,Ui),

which extend

Hom(X,Ui0 ×S′ · · · ×S′ Uiq ) =
⊔

f∈Hom(X,S′)

Homf (X,Ui0 ×S′ · · · ×S′ Uiq ) =
⊔

f∈Hom(X,S′)

q∏
j=0

Homf (X,Uij ).

Writing S(f) =
⊔
i Homf (X,Ui), it then follows that

⊕
i0,...,iq

ZUi0×S′ ···×S′Uiq (X) = Z

 ⊔
i0,...,iq

Hom(Ui0 ×S′ · · · ×S′ Uiq , X)


∼= Z

 ⊔
f∈Hom(X,S′)

⊔
i0,...,iq

q∏
j=0

Homf (X,Uij )


=

⊕
f∈Hom(X,S′)

Z

 q∏
j=0

S(f)

 .

Hence the complex ⊕
i

ZUi(X)←
⊕
i,j

ZUi×S′Uj (X)←
⊕
i,j,k

ZUi×S′Uj×S′Uk(X)← · · ·

is exact if and only if for each f ∈ Hom(X,S′) the simplicial complex

ZS(f)← ZS(f)2 ← ZS(f)3 ← · · ·

is exact. A simple computation shows that this is indeed the case, finishing the proof.
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Remark 2.27. If V is any refinement of U , then the obvious map Ȟ0(U/S′,F) → Ȟ0(V/S′,F) induces, by
universality of delta functors, a unique morphism Ȟ∗(U/S′,F)→ Ȟ∗(V/S′,F) of δ-functors. By uniqueness, it
follows that this morphism is precisely the refinement morphism ρV,U : Ȟ∗(U ,P)→ Ȟ∗(V,P) described above.

We omit the proof of the following theorem (see [Tam94, Theorem 2.2.6]).

Theorem 2.28. The functor F 7→ Ȟ0
ét(S

′,F) is an additive left-exact functor, whose right-derived functors are
precisely the Čech cohomology groups Ȟp

ét(S
′,F).

2.5 Relationship Between Étale Cohomology and Čech Cohomology

Čech cohomology is fundamentally a cohomology theory on the category of pre-sheaves, whereas étale coho-
mology is a cohomology theory on the category of sheaves. Thus, while they are closely related, the fact that
epimorphisms behave differently in the category of sheaves versus the category of pre-sheaves complicates things.

Proposition 2.29. The inclusion functor ι from AbShvét(S) to the category of pre-sheaves on Schét
S is a

left-exact additive functor whose right-derived functors R•ι are given by(
(Rnι)F

)
(X) = Hn

ét(X,F) ∀X ∈ Schét
S .

Proof. Since pull-backs by étale maps send injective sheaves to injective sheaves, each of the pre-sheaves X 7→
Hn

ét(X,−) is eraseable. Since H•ét(X,−) is a δ-functor for all X ∈ Schét
S , it follows that the collection of maps

from sheaves to pre-sheaves taking F to the pre-sheaf X 7→ Hn
ét(X,F) is a δ-functor, and thus universal. Since

they agree at the n = 0 piece, it follows that Rnι = (X 7→ Hn
ét(X,−)).

Definition. Let Hn
ét denote the right-derived functors of Rnι. The proposition then states that Hn

ét(F) is the
pre-sheaf sending X ∈ Schét

S to Hn
ét(X,F).

Proposition 2.30. The sheafification of Hn
ét is 0 for all n ≥ 1.

Proof. Consider the inclusion functor ι : AbShvét(S) → AbPreShvét(S) and the sheafification functor (−)sh :
AbPreShvét(S) → AbShvét(S); their composition ι(−)sh : AbShvét(S) → AbShvét(S) is the identity functor
I on AbShvét(S). Since sheafification is an exact functor, all of its derived functors vanish, and in particular
every pre-sheaf is (−)sh-acyclic. Hence, we have a spectral sequence

Epq2 = Rq(−)sh
(
Hp(F)

)
⇒ Rp+qI(F)

for every sheaf F . Since Rq(−)sh = 0 for q ≥ 1, we have Epq2 = 0 for all q > 0. It follows from Proposition A.12
that all the edge morphisms RpI(F)→ Ep,02 = Hp(F)sh are isomorphisms. However, I is exact and so RpI = 0
for all p ≥ 1. Hence Hp(F)sh = 0 for all p ≥ 1, as required.

Note that the inclusion functor ι : AbShvét(S)→ AbPreShvét(S) sends injective objects to injective objects.
As a consequence of the Grothendieck spectral sequence applied to the functors ι : AbShvét(S)→ AbPreShvét(S)
and Ȟ0(U ,−) : AbPreShvét(S) → Ab (resp. Ȟ0

ét(S,−)), noting that their composition is precisely the global-
sections functor, we have the following result.

Theorem 2.31 (Spectral sequences for Čech cohomology). We have cohomological spectral sequences

Ȟq(U , Hp
ét(F))⇒ Hp+q

ét (S,F) ∀ étale covers U of S, and Ȟq
ét(S,H

p
ét(F))⇒ Hp+q

ét (S,F)

that are moreover functorial in F .

Remark 2.32. By abstract universal δ-functor nonsense, if one can show that the Čech cohomology functors
when restricted to sheaves give rise to a δ-functor (the obstruction here is the exactness of the long sequence of
cohomology groups attached to a short exact sequence of sheaves), then Čech cohomology and the usual étale
cohomology would coincide. This occurs with added conditions on S.

By looking at the edge maps, we get the following results. All of these follow by appealing to Proposition
A.12 after showing that Epq2 = 0 for some values of p. See [Tam94] for the explicit proofs.

Proposition 2.33. Suppose U is an étale covering of S, and F ∈ AbShvét(S) such that Hq(Ui0 ×S · · · ×S
Uir ,F) = 0 for all q ≥ 0 and all multi-indices (i0, ..., ir). Then, the edge morphisms Ȟq(U ,F)→ Hq

ét(S,F) are
isomorphisms for all p.

Proposition 2.34. For any F ∈ AbShvét(S), the edge morphisms Ȟq(U ,F) → Hq
ét(S,F) are isomorphisms

for q = 0, 1 and is an injection for q = 2.
More generally, if Ȟq

ét(S,H
p(F)) = 0 for 0 < q < n, then the edge map Ȟm

ét (S,F) → Hm
ét (S,F) is an

isomorphism for all m ≤ n and an injection for m = n+ 1.
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There are some hard theorems that describe sufficient conditions for when étale and Čech cohomology
coincide. We state them without proof below.

Theorem 2.35 (Artin). If S is a scheme such that every finite subset of points of S is contained in an open
affine subscheme, then we have canonical isomorphisms H•ét(S,−) ∼= Ȟ•ét(S,−).

For instance, this holds if S is quasi-projective over a Noetherian ring.

Theorem 2.36 (Cartan’s Lemma). Let F be a sheaf of abelian groups on a scheme S. Let K be a class of étale
S-schemes U such that

• if U, V ∈ K then U ×S V ∈ K; and

• every étale S-scheme X has an étale S-covering {Ui → X} such that Ui ∈ K.

If Ȟi(U,F) = 0 for all U ∈ K and all i ≥ 1, then the canonical edge map

Ȟi
ét(S,F)→ Hi

ét(S,F)

is an isomorphism for all i.

2.6 Flabby Sheaves

Definition. A sheaf F ∈ AbShvét(S) is flabby if Hn(U,F) = 0 for all n > 0 and all U ∈ Schét
S .

Proposition 2.37. Suppose F ∈ AbShvét(S). The following are equivalent:

1. F is flabby;

2. Ȟq(U/U,F) = 0 for all q > 0, for all U ∈ Schét
S , and for all étale coverings U of U ;

3. Ȟq(U,F) = 0 for all U ∈ Schét
S .

Proof. Since F is flabby, Hn(F) = 0 for all n ≥ 1, and so Proposition 2.33 implies that Ȟq(U/U,F) = 0 for all
q > 0, all U ∈ Schét

S and all étale coverings U of U . Thus (1) =⇒ (2). The implication (2) =⇒ (3) follows
immediately by taking colimits. Now assume that (3) holds.

We have H1
ét(U,F) ∼= Ȟ1

ét(U,F) = 0 for all U ∈ Schét
S . We now proceed by induction using the spectral

sequence for Čech cohomology. Suppose Hi
ét(F) = 0 for all i < n. Then we have Ȟq

ét(U,H
p
ét(F)) = 0 for all

p < n and all q, and in particular for p + q ≤ n whenever q ≥ 1. The spectral sequence then implies that
Ȟn

ét(U,F) = 0 for all U ∈ Schét
S .

We have some obvious properties of flabby sheaves.

Proposition 2.38. 1. Suppose 0 → F ′ → F → F ′′ → 0 is an exact sequence in the category AbShvét(S).
If F ′ is flabby, then this sequence is also exact in AbPreShvét(S).

2. If F ′ and F are flabby in the exact sequence 0→ F ′ → F → F ′′ → 0, then so is F ′′.

3. If the direct sum F ⊕ G of abelian sheaves is flabby, so is F and G.

4. Injective abelian sheaves are flabby.

5. Pull-backs by étale morphisms send flabby sheaves to flabby sheaves.

2.7 Cohomology with Supports

Suppose X is a scheme, i : Z ↪→ X a closed immersion, and j : U ↪→ X an open immersion such that X is
the disjoint union of i(Z) and j(U). We have the functor F 7→ ker(F(X) → F(U)) from AbShvét(X) to Ab.
This is obviously an additive covariant functor. It is also left-exact, since the functors Γ(X,−) and Γ(U,−) are
left-exact.

Definition. The right derived functors H•Z(X,−) of the functor F 7→ ker(F(X)→ F(U)) are called the (étale)
cohomology groups with support in Z.

Remark 2.39. The functors H•Z(X,−) are contravariant in (X,U).

The proof of the following result is omitted (c.f. [Mil80, Chapter 3, Proposition 1.25])
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Proposition 2.40. For any sheaf F ∈ AbShvét(X) there is a long exact sequence

0→ H0
Z(X,F)→ F(X)→ F(U)→ H1

Z(X,F)→ H1
ét(X,F)→ H1

ét(U,F)→ H2
Z(X,F)→ · · · .

Proposition 2.41 (Excision). Let Z ⊂ X and Z ′ ⊂ X ′ be closed subschemes, and let f : X ′ → X be an
étale morphism such that f |Z′ : Z ′ → Z induces an isomorphism, and such that f(X ′ \ Z ′) ⊂ X \ Z. Then
Hp
Z(X,F) ∼= Hp

Z′(X
′, f∗F) for all p ≥ 0 and all sheaves F ∈ AbShvét(X).

Proof. Note that f∗ is exact and preserves injectives. Since both sides are right-derived functors of their p = 0
component, it suffices to show that H0

Z(X,F) ∼= H0
Z′(X

′, f∗F). Setting U = X \ Z and U ′ = X ′ \ Z ′, we have
an exact commutative diagram

0 H0
Z(X,F) F(X) F(U)

0 H0
Z′(X

′, f∗F) f∗F(X ′) f∗F(U ′).

Let s ∈ H0
Z(X,F) map to zero in H0

Z′(X
′, f∗F). Taking s ∈ F(X), we see that s|U = 0 since s ∈ H0

Z(X,F)
and that s|X′ = 0 since it maps to zero in H0

Z′(X
′, f∗F). Since U → X and f : X ′ → X covers X (as U = X \Z,

and Z = f(Z ′) ⊂ f(X ′)), it follows that s = 0 in F(X). Thus the left vertical map is injective.
On the other hand, suppose s′ ∈ H0

Z′(X
′, f∗F), which we again regard as an element of f∗F(X ′). Then,

s′|U ′ = 0, and so the sections s′ ∈ f∗F(X ′) = F(X ′) and 0 ∈ F(U) agree on X ′×X U ⊂ U ′. Thus these sections
glue to give a section s ∈ Γ(X,F). Since s|U = 0, we have s ∈ H0

Z(X,F).

Now suppose X is a separated variety, and fix an embedding j : X ↪→ X̄ making X an open subvariety of a
complete variety X̄.

Definition. The cohomology groups with compact support are given by

Hp
ét,c(X,F) := Hp

ét(X̄, j!F).

Remark 2.42. If F is a torsion sheaf, then Hp
ét,c(X,F) is independent of the choice of X̄.

Set
Γc(X,F) :=

⋃
Z

ker
(
F(X)→ F(X \ Z)

)
where Z runs through all complete subvarieties of X. We then have the following proposition, whose proof is
omitted (see [Mil80, Chapter 3, Proposition 1.29]).

Proposition 2.43. Suppose X and X̄ are as above, we consider any F ∈ AbShvét(X).

1. H0
ét,c(X,F) = Γc(X,F);

2. The functors Hp
ét,c(X,−) form a δ-functor.

3. For any complete subvariety Z of X, there is a canonical morphism of δ-functors Hp
Z(X,−)→ Hp

c (X,−).

2.8 Torsors

Definition. For S a scheme and G a group object in Shvét(S), a left G-torsor is an object F in Shvét(S) that
has non-empty stalks and is equipped with a left G-action such that the canonical map G×F → F ×F defined
by (g, s) 7→ (gs, s) is an isomorphism. The notion of right G-torsors is defined similarly.

The trivial left G-torsor is the sheaf G with the G-action defined by left multiplication.

Example 2.44. If S is connected and X a connected Galois cover of S with Galois group G, then the representable
sheaf X is a right torsor for the S-group S ×G.

Remark 2.45. Note that a choice of element in F(U) whenever F(U) is non-empty induces an isomorphism
F|U ∼= G|U as left G-torsors. Since F has non-empty stalks and is thus non-empty étale locally, it follows that
F and G are étale locally isomorphic. In particular, if G is LCC then so is F .

We have the following theorem, which we do not prove.
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Theorem 2.46. Let G be an abelian sheaf on Schét
S . The set of isomorphism classes of left G-torsors in

AbShvét(S) naturally forms a group with group operation products, identity the trivial left G-torsor, and inverses
given by twisting the action of G via the inverse homomorphism G→ G, x 7→ −x.

Moreover, this group of (isomorphism classes of) left G-torsors in AbShvét(S) is canonically isomorphic to
H1

ét(X,G), and this isomorphism is bifunctorial in (X,G).

Remark 2.47. This result follows by showing that the group of classes of leftG-torsors is isomorphic to Ȟ1
ét(X,G).

The essential idea in constructing this isomorphism is to notice that local trivializations of a left G-torsor on
an open cover correspond to Čech 1-cocycles on this open cover, and that different local trivializations differ by
a Čech 1-coboundary.

Example 2.48. An étale line bundle on S is an invertible OS,ét-module on S, i.e. it is an (étale-)locally free
OS,ét-module sheaf of rank 1. The set of isomorphism classes of étale line bundles is denoted Picét(S). Just as
for Zariski-sheaves, Picét(S) is a group under tensor products. Notice that an étale line bundle can be equally
well thought of as a Gm,S-torsor. Hence,

Picét(S) ∼= H1
ét(S,Gm).

Using the bifunctoriality of the above isomorphism, we can give a very powerful theorem relating the étale
H1

ét and the étale fundamental group for LCC group sheaves. Suppose x̄ : Spec k̄ → S is a geometric point of
a connected scheme S. Note that the group of left G-torsors is equivalent (by the LCC classification and the
equivalence of sheaves over Spec k and Galois modules) to the group of left Gx̄-torsors over Spec k̄.

Theorem 2.49. If S is connected and x̄ a geometric point of S, and if G ∈ AbShv(S) is an LCC group object,
then there is a bifunctorial isomorphism of groups

H1
ét(X,G) ∼= H1

(
πét

1 (X, x̄), Gx̄
)
,

where the cohomology on the right is group cohomology.

2.9 Generalities on Topology Comparisons

Suppose T and T ′ are two Grothendieck topologies on categories C and C′ respectively. For a site (C, T ) we
denote Shv(T ) (resp PreShv(T )) to be the category of sheaves (resp. pre-sheaves) of sets on (C, T ). Similarly
for AbShv(T ) and AbPreShv(T ).

Definition. A morphism of topologies F : T → T ′ is a functor F : C → C′ of the underlying categories such
that for any U ∈ C and for any covering U = {fi : Ui → U}i∈I ∈ CovT (U), we have

• {F (fi) : F (Ui)→ F (U)}i∈I ∈ CovT ′(F (U)); and

• for any morphism g : V → U in C the canonical morphism

F (Ui ×U V )→ F (Ui)×F (U) F (V )

is an isomorphism for all i ∈ I.

Notice that a morphism of topologies F : T → T ′ induces a functor

F ∗ : PreShv(T ′)→ PreShv(T ), F 7→ F ◦ F

which restricts naturally to a functor F ∗ : Shv(T ′)→ Shv(T ). This functor has a left-adjoint

F∗ : PreShv(T )→ PreShv(T ′)

(defined in a similar way to f∗), and upon sheafification it induces a functor F∗ : Shv(T ) → Shv(T ′). This
functor F∗ on sheaves is again left-adjoint to F ∗. In particular, we record the following important consequence.

Proposition 2.50. The functor F ∗ : Shv(T ′)→ Shv(T ) is left-exact.

Example 2.51. If f : S′ → S is a morphism of schemes, then we have a corresponding base-change functor
f̂ : Schét

S → Schét
S′ given by f̂(X) = X×S S′ for all X ∈ Schét

S . In this case, the functor f̂∗ is the usual pull-back

f∗, and the functor f̂∗ is the usual push-forward f∗. In fact, most of the results from the previous section can be
generalized to an arbitrary Grothendieck topology on any category with all finite products and a final object.
This is the perspective taken in [Tam94].
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It is important to be able to compute the pull-back functor F ∗ as well as its right derived functors (recall
that Shv(T ′) has enough injectives). We have the following result.

Theorem 2.52. Suppose F : T → T ′ is a morphism of topologies with induced map F ∗ : AbShv(T ′) →
AbShv(T ) For each F ′ ∈ AbShv(T ′) there is an isomorphism

RqF ∗(F ′) ∼=
(
F ∗Hq

T ′(F
′)
)sh

,

i.e. the sheaf RqF ∗(F ′) ∈ AbShv(T ) is the sheaf associated to the pre-sheaf U 7→ Hq
T ′(FU,F ′) on T .

Proof. Notice that F ∗ is the composition of functors

AbShv(T ′) ↪→ AbPreShv(T ′) F∗−−→ AbPreShv(T )
(−)sh−−−−→ AbShv(T ).

Here, the first functor AbShv(T ′) ↪→ AbPreShv(T ′) is left-exact whereas the composition AbPreShv(T ′) →
AbShv(T ) is exact. Since the right-derived functors of AbShv(T ′) ↪→ AbPreShv(T ′) is the pre-sheaf U ′ 7→
Hq
T ′(U

′,−), the result follows.

A basic computation shows the following.

Proposition 2.53. Suppose F : T → T ′ is such that the functor F : C → C′ sends fibre products to fibre
products. Then, we have an equality of Čech complexes

C•({Ui → U}, F ∗F ′) ∼= C•({FUi → FU},F ′)

for all F ′ ∈ AbShv(T ′). Thus Čech cohomology on T and T ′ coincides.

Corollary 2.53.1. F ∗ sends flabby sheaves in AbShv(T ′) to flabby sheaves in AbShv(T ).

If a morphism of topologies is sufficiently nice, we get comparison theorems on cohomology as follows.

Theorem 2.54. Suppose (C, T ) and (C′, T ′) are two sites, such that C′ is a full-subcategory of C. Suppose the
inclusion functor ι : C′ → C induces a morphism on topologies, such that for each U ∈ C′ and each covering
{Ui → ιU} ∈ CovT (ιU) there exists a cover {U ′j → U} ∈ CovT ′(U) such that {ιU ′j → ιU} is a refinement of
{Ui → ιU}.

Then, the following holds.

• The morphism ρF ′ : F ′ → ι∗ι∗F ′ corresponding to the image of Idι∗F ′ under the adjunction

HomShv(T )(ι∗F ′, ι∗F ′) ∼= HomShv(T ′)(F ′, ι∗ι∗F ′)

is an isomorphism for all F ′ ∈ Shv(T ′).

• The functor ι∗ is an exact functor.

• For all U ′ ∈ C′, all abelian sheaves F ∈ AbShv(T ) and F ′ ∈ AbShv(T ′), we have functorial isomorphisms

H•T ′(U
′, ι∗F) ∼= H•T (ιU ′,F) and H•T ′(U

′, F ′) ∼= H•T (ιU ′, ι∗F ′).

See [Tam94, Theorem 3.9.2 & Corollary 3.9.3] for a proof.
Strengthening the conditions in the previous theorem a little, we get the following proposition (c.f. [Tam94,

Theorem 3.9.1]).

Theorem 2.55. Suppose (C, T ) and (C′, T ′) are two sites, such that C′ is a full-subcategory of C. and the
inclusion functor ι : C′ → C induces a morphism on topologies. Suppose also that any covering {Ui → U} in T
with Ui and U objects in C′ is in fact a covering in the topology T ′, and moreover that each object U in C has
a covering {Ui → U} such that Ui ∈ C ′.

Then, the functors ι∗ : Shv(T ) → Shv(T ′) and ι∗ : Shv(T ′) → Shv(T ) are quasi-inverse equivalences (i.e.
ι∗ ◦ ι∗ and ι∗ ◦ ι∗ are naturally equivalent to the identity functors on their respective categories).
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2.10 Comparing Zariski and Étale Cohomology

Suppose S is a scheme. Since any open embedding is étale, we have an obvious fully-faithful functor ι that
embeds the Zariski topology on a scheme S into the étale site Schét

S . We know that the corresponding functor
ι∗ : Shvét(S)→ ShvZar(S) is left-exact. For any Zariski sheaf F , we have an obvious map

H0
Zar(S,F) ∼= F(S)→ ι∗F(S) ∼= H0

ét(S, ι∗F)

which must extend to a unique map of δ-functors

H•Zar(S,F)→ H•ét(S, ι∗F).

This map is rarely an isomorphism.
Suppose now that the Zariski sheaf F is an OS-module (here, OS denotes the usual Zariski structure sheaf of

a scheme). The natural mapOS → ι∗OS,ét of Zariski sheaves of rings induces by adjointness a map ι∗OS → OS,ét

of étale sheaves of rings. This map is in general not an isomorphism (see the following lemma). However, we
get an étale OS,ét-module

Fét := OS,ét ⊗ι∗OS ι∗F .

We have thus defined a functor F 7→ Fét from the category ModZar(OS) of Zariski OS modules to the category
Modét(OS,ét) of étale OS,ét modules.

Example 2.56. We have
(OS)ét

∼= OS,ét

( ∼= Ga,S
)

where the last congruence ignores the ring structure on OS,ét.

Example 2.57. Recall that Pic(S) is the group of (Zariski) line bundles on the scheme S. The functor (−)ét

induces a morphism Pic(S)→ Picét(S).

The following lemma is a straightforward computation using an explicit construction of the Henselization of
a ring.

Lemma 2.58. Consider a geometric point s̄ : Spec k̄ ↪→ S with image the point s ∈ S (with k = κ(s)). The
stalk of the étale sheaf OS,ét at s̄ is written as OS,ét,s̄, which we consider as simply a ring (by taking global
sections). Then,

(OS,s)sh ∼= OS,ét,s̄.

Since strict henselization is a flat, we have the following corollary.

Corollary 2.58.1. The functor ModZar(OS)→ Modét(OS,ét),F 7→ Fét is exact.

Proposition 2.59. Suppose h : X → S is étale, and F a quasi-coherent Zariski OS-module. Then h∗Fét
∼=

(h∗F)ét.
In other words, pushing forward to the étale site and then pulling back by h to the étale site Schét

X is the
same as first pulling back F to a Zariski sheaf on X and then pushing forward to the étale site on X.

See [Con, Example 1.2.6.1] for the proof.

Remark 2.60. While the proof is not important, the following description of Fét for F quasi-coherent arising
from the proof is useful: for any étale S-scheme U , we have

Fét(U
h−→ S) = Γ(U, h∗F).

As a consequence of this proposition, as well as by fpqc descent of quasi-coherent sheaves (recall étale covers
are fpqc covers as well), we have the following.

Corollary 2.60.1. The functor F 7→ Fét yields an isomorphism Pic(S) ∼= Picét(S) of groups. In particular, it
follows that

H1
Zar(S,Gm) ∼= H1

ét(S,Gm).

Since ModZar(OS)→ Modét(OS,ét),F 7→ Fét is an exact functor, we can compose the Zariski-étale compar-
ison morphism to define another δ-functorial comparison morphism

H•Zar(S,F)→ H•ét(S,Fét)

for all F ∈ ModZar(OS).
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Theorem 2.61. The above comparison morphism

H•Zar(S,F)→ H•ét(S,Fét)

is an isomorphism whenever F is a quasi-coherent Zariski OS-module.

Proof. We follow the proof given in [Tam94]. Fix a quasi-coherent Zariski OS-module F . The composition of
functors

AbShvét(S)
ι∗−→ AbShvZar(S)

ΓZar−−−→ Ab

is the global sections functor on étale sheaves. If F ∈ AbShvét(S) is an injective sheaf, then it is in particular
flabby, and so by Corollary 2.53.1 it is ΓZar-acyclic. The Grothendieck spectral sequence applied to the object
Fét ∈ Modét(OS,ét) ⊂ AbShvét(S) is then

Hq
Zar(S,R

pι∗(Fét))⇒ Hp+q
ét (S,Fét).

Notice that, if we can show that Rpι∗(Fét) = 0, then the spectral sequence above immediately forces all the
edge morphisms

Hq
Zar(S,F)→ Hq

ét(S,Fét)

are isomorphisms, where we use the obvious fact that ι∗(Fét) ∼= F for any sheaf F . However, by Theorem 2.52,
we know that Rpι∗(Fét) is the sheafification of the pre-sheaf

U 7→ Hp
ét(U,Fét) ∼= Hp

ét(U,Fét|U )

for any open embedding U ↪→ S. By Proposition 2.59, we have Fét|U ∼= (F|U )ét. Since affine opens form a basis
for the Zariski topology, it suffices to show that Hp

ét(U, (F|U )ét) = 0 for any affine open U of S.

So suppose U = SpecA is affine, and F|U = M̃ . Let T be the site whose underlying category is the full-
subcategory of all affine schemes in Schét

U , and whose topology is the induced topology. Notice that the inclusion
morphism T ↪→ Schét

U satisfies the conditions of Theorem 2.54 (since open embeddings are étale). Thus, we have

Hp
ét(U, (F|U )ét) = Hp

T (U, (F|U )ét)

(we abuse notation by writing (F|U )ét for the induced sheaf in AbShv(T ) as well). Thus it suffices to work with
affine schemes only. We claim that (F|U )ét is flabby as a sheaf in AbShv(T ); it suffices to show this for Čech
cohomology, i.e. we want to show that

Ȟp
T (U , (F|U )ét) = 0

for all p ≥ 1 and all coverings U of U in T . Since affine schemes are quasi-compact, we may suppose U is a finite
covering. Let U = {U1, ..., Un} where each Ui is affine, Ui → U is étale, and

⊔
i Ui → U is surjective. However,

as there are only finitely many affines, we see that
⊔
i Ui is also affine, and moreover

Ȟp
T (U , (F|U )ét) = Ȟp

T

(⊔
i

Ui → U, (F|U )ét

)
.

Thus, we have reduced to the case that U = {V → U} where V is affine and étale over U , and that V → U is
surjective. Let U = SpecA and V = SpecB, so that B is an étale algebra over A. Writing F|U = M̃ for an
A-module M , the Čech complex is the complex

M ⊗A B →M ⊗A B ⊗A B →M ⊗A B ⊗A B ⊗A B → · · ·

(here, we use the fact that M̃(SpecB) ∼= ˜M ⊗A B). However, as V → U is surjective and étale (in particular
flat), B/A is faithfully flat. It follows that the above complex is exact. Hence the Čech cohomology groups
vanish, yielding the theorem.

Corollary 2.61.1. If S is affine and F a quasi-coherent Zariski OS-module, then Hp
ét(S,Fét) = 0 for all p ≥ 1.

In particular, we have that Hp
ét(S,Ga,S) = Hp

ét(S,OS,ét) = 0 for all p ≥ 1 and all affines S.
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2.11 Kummer and Artin-Schreier Sequences

Fix a scheme S. Recall the representable abelian sheaf Gm ∈ AbShvét(S) given by Gm(U) = OU (U)×. For any
n ∈ N, the map x 7→ xn on Gm(U) induces a morphism Gm → Gm; the kernel of this map is the representable
sheaf µn. This sheaf is representable by the finite flat commutative group scheme Spec k[t]/ 〈tn − 1〉.

Definition. We say that n ∈ N is invertible on a scheme S, or is a unit on S, if n is non-zero in the residue
field κ(x) for all x ∈ S.

Proposition 2.62 (Kummer Exact Sequence). We have the exact sequence

0→ µn → Gm
(−)n−−−→ Gm

of étale abelian sheaves. If n is a unit on S, then

0→ µn → Gm
(−)n−−−→ Gm → 0

is an exact sequence, called the Kummer sequence.

Proof. The first exact sequence is obvious since µn is by definition the kernel of Gm → Gm. Now suppose n is a
unit on S. To see that Gm → Gm, x 7→ xn is surjective, we need to show that for any étale S-scheme X and any
element u ∈ Gm(X), there exists an étale covering {Ui} of X and sections ai ∈ Gm(Ui) such that ani = u|Ui .

Take an affine open covering {SpecAi} of X, and let ui := u|SpecAi ∈ Ai. Since n is a unit on S, it must be
non-zero in Ai, and so the algebra

Ãi =
A[t]

〈tn − ui〉

is étale over Ai (the derivative of tn − u is ntn−1 which is non-zero). The inclusions Ai ↪→ Ãi induce an étale
cover {Spec Ãi} of X. Now, ãi = [t] ∈ Ãi satisfies ãni = ui|Spec Ãi

= u|SpecAi , as required.

Notation. For an abelian group A, we write A[n] to be the n-torsion points of A.

Taking the long exact sequence in étale cohomology associated to the Kummer exact sequence, we get the
following corollary.

Corollary 2.62.1. If n is a unit on S, then we have the exact sequence

0→ OS(S)×

(OS(S)×)n
→ H1

ét(S, µn)→ Picét(S)[n] ∼= Pic(S)[n]→ 0.

This allows us to compute H1
ét(S, µn) in some special cases.

Corollary 2.62.2. If S = SpecA for A a local ring, and if n is invertible in A, then

H1
ét(S, µn) ∼= A×/(A×)n.

Corollary 2.62.3. If S is a reduced proper scheme over a separably closed field k, and if n 6= 0 in k, then

H1
ét(S, µn) ∼= Pic(S)[n].

Remark 2.63. Just as in analytic theory the exponential exact sequence is very useful, the Kummer sequence
is analogously very useful in applications to cohomology.

Suppose now p is prime and the characteristic of S is p, i.e. p · OS,s = 0 for all s ∈ S. In characteristic p the
map t 7→ tp − t is additive, and it defines a map ℘ : Ga → Ga in AbShvét(S).

Proposition 2.64 (Artin-Schreier Sequence). If S is a scheme with characteristic p, then we have the exact
sequence

0→ Z/pZ→ Ga
℘−→ Ga → 0.

Proof. It is clear that Z/pZ ↪→ Ga, since S has characteristic p. We need to show that ker℘ = Z/pZ and
Ga → Ga is surjective. That ker℘ = Z/pZ follows from the fact that sp − s =

∏
j∈Z/pZ(s − j), and so

s ∈ ker℘(X) if and only if s|X′ ∈ Z/pZ as X ′ runs through all connected components of X.
Now suppose X ∈ Schét

S and s ∈ Ga(X). Take an affine open covering {SpecAi} of X, with si := s|SpecAi ∈
Ai. Define Ãi = A[x]/ 〈xp − x− si〉; since (xp−x−si)′ = −1 it follows that Ãi is étale over A, and so {Spec Ãi}
is an étale cover of X. Taking s̃i = [t] ∈ Ãi, we have ℘(s̃i) = si|Spec Ãi

= s|Spec Ãi
. Hence ℘ is surjective.
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Notation. If A is a group and φ : A → A an endomorphism of the group, we write Aφ for the subgroup of
A fixed pointwise by φ, or equivalently, the invariant subgroup of A given by the action of the cyclic group
〈φ〉 ≤ End(A).

As before, the long exact sequence in étale cohomology associated to the Artin-Schreier sequence yields the
following corollaries.

Corollary 2.64.1. If S has characteristic p, we have the exact sequence

0→ OS(S)

℘
(
OS(S)

) → H1
ét(S,Z/pZ)→ H1

ét(S,OS)Frob → 0.

Corollary 2.64.2. If X = SpecA, with charA = p, then

Hq
ét(X,Z/pZ) =

{
A/℘(A) q = 1

0 q > 1.

Proof. As OSpecA is quasi-coherent over SpecA, its higher cohomology groups vanish. The result follows.

Corollary 2.64.3. If k is a separably closed field of characteristic p and X is a reduced proper k-scheme, then

H1
ét(S,Z/pZ) ∼= H1

ét(S,OS)Frob.

Remark 2.65. In all of these corollaries, we use the fact that OS is a Zariski quasi-coherent sheaf over S, and
so the Zariski sheaf cohomology and the étale sheaf cohomology coincide.

Definition. Let S be a scheme. An abelian étale sheaf F on Schét
S is a torsion sheaf if every section is locally

killed by a non-zero integer, or equivalently, that all the stalks are torsion abelian groups. Write AbShvtorsét (S)
for the full subcategory of torsion abelian étale sheaves on Schét

S .
If all sections are locally killed by powers of a prime p, then F is a p-power torsion sheaf.

We now state a hard theorem that results from the Artin-Schreier and Kummer sequences. For a reference
to the proof see [Con, Theorem 1.2.7.3].

Theorem 2.66. Let X be a separated finite type scheme of dimension ≤ 1 over a separably closed field k. For
any torsion sheaf F on X, the groups Hi

ét(X,F) vanish for i ≥ 3. If F is constructible, then Hi
ét(X,F) is finite

for i ≤ 2.
Moreover, we have H2

ét(X,F) = 0 if either

• X is affine and the torsion orders of F are not divisible by char(k); or

• X is proper, char(k) = p > 0, and F is a p-power torsion sheaf.
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3 Cohomology of Torsion Sheaves

3.1 Compatibility of Limits and Cohomology

In this subsection, we write down extremely important results on limits/colimits of schemes and the behaviour
of étale cohomology with such limits. These results are extremely powerful tools to reduce proving a theorem
to only proving a very special case. The proof of most of the big results that follow after this subsection will
almost always use one of the theorems listed here, though we will omit all proofs in subsequent sections.

Suppose I is a filtered category, and consider a contravariant functor i 7→ Xi from Iop→ Sch. We have the
following theorem.

Theorem 3.1. Suppose for each i→ j in I the morphism Xj → Xi is affine. Then, the functor

Schop → Set, Y 7→ lim
i∈I

Xi(Y )

is representable by a scheme X (i.e. the limit of the diagram Iop → Sch exists).

Proof. We follow the proof in [Tam94]. Fix some i0 ∈ I. For each i→ i0, since Xi0 → Xi is affine, there is an
Xi0-isomorphism of schemes

Xi
∼= SpecAi

where Ai is a quasi-coherent sheaf of OXi0 -algebras. Then, we have a filtered system of quasi-coherent sheaves
Ai of OXi0 -algebras indexed by the over-category I/i0 of arrows i→ i0. Since colimits of quasi-coherent sheaves
always exist, we can find a quasi-coherent OXi0 -algebra A such that

A =
colim
i→ i0Ai.

Define X = SpecA. The morphisms Ai → A induce morphisms ui : X → Xi for all i ∈ I such that i → i0.
Since I is filtered, it follows that these morphisms extend to give morphisms ui : X → Xi for all i ∈ I. Then X
is the limit of the diagram (Xi).

We get some preliminary properties.

Proposition 3.2. Let X and (Xi)i∈I be as above. Let ui : X → Xi be the canonical morphisms.

1. Each morphism ui is an affine morphism.

2. The underlying topological space of X is canonically homeomorphic to the limit of the underlying topological
spaces Xi.

3. The structure sheaf OX is canonically isomorphic to colimi∈Iu
−1
i OXi .

4. If all the (Xi)i∈I are S-schemes and the morphisms Xj → Xi are S-morphisms, then X is also the limit
of the diagram (Xi) in the category SchS.

5. If T → S is given, then
lim
i∈I

(Xi ×S T ) ∼= X ×S T.

Now suppose for each i ∈ I we have an abelian sheaf Fi ∈ AbShvét(Xi) in such a way that for each arrow
i → j in I the sheaf Fj is the inverse image of Fi under the corresponding morphism fij : Xj → Xi. Since
fij ◦ uj = ui, it follows that u∗iFi = u∗jFj . Thus u∗iFi is independent of i ∈ I, and so we can define a sheaf
F = u∗iFi ∈ AbShvét(X). Now, each ui induces a canonical morphism of δ-functors

H•ét(Xi,Fi)→ H•ét(X,F)

which is compatible with the canonical morphisms H•ét(Xi,Fi) → H•ét(Xj ,Fj) induced by the arrow i → j in
I. Therefore, we obtain a canonical homomorphism

colim
i∈I

Hq(Xi,Fi)→ Hq(X,F)

for all q ≥ 0. We have the following two hard theorems.

Theorem 3.3. If X is a quasi-compact and quasi-separated scheme, and {Fi} a filtered directed system of
abelian sheaves on Xét with colimit F , then the map

colimiH
n
ét(X,Fi)→ Hn

ét(X,F) = Hn
ét (X, colimiFi) .
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Theorem 3.4. Suppose I is filtered and i 7→ Xi a contravariant functor Iop → SchS. Assume as before that
Xj → Xi is affine for all i → j so that X = limiXi exists. Assume also that each Xi is quasi-compact and
quasi-separated. Suppose also that for each i ∈ I we have Fi ∈ AbShvét(Xi) is given such that for each i → j
with corresponding morphism fij : Xj → Xi, we have Fj = f−1

ij Fi (not just Fj = f∗ijFi). Let F = u−1
i Fi where

ui : X → Xi are the canonical morphisms; as before F is independent of i. Then, the canonical homomorphism

colim
i∈I

Hq(Xi,Fi)→ Hq(X,F)

is an isomorphism for all q ≥ 0.

For a proof of both theorems see [Con]. We summarize the key points here. The crucial step is to notice that
if U is quasi-compact and quasi-separated over S, then any étale cover of U over S admits a finite refinement
{Ui} with each étale map Ui → U quasi-compact and quasi-separated. One can then use this fact and the
filtered assumption on Fi to compute that the canonical homomorphism between the Čech cohomology in
degree 0 is an isomorphism. Next, one inducts on the degree and does a similar computation as above to prove
an isomorphism in Čech cohomology for all degrees, by using the fact that in a finite étale cover {Ui} of U where
each Ui → U is quasi-compact and quasi-separated, all finite products are quasi-compact and quasi-separated.
Finally, an argument involving the Čech to étale cohomology spectral sequence shows that the commuting of
Ȟ•ét with colimits implies the commuting of H•ét with colimits. For the proof of the degree 0 isomorphism in
Čech cohomology in the second theorem above, one also needs to use a clever argument involving topoi of
subcategories of Schét

S . For details see [Con, Theorem 1.3.2.3].
We now list some applications of the above theorem. The most important of such applications is the

computation of fibres.

Corollary 3.4.1. Suppose f : X → Y is a quasi-compact and quasi-separated morphism of schemes, and
F ∈ AbShvét(X). Let ȳ be a geometric point of Y , and set Ȳ := SpecOY,ét,ȳ (here, the stalk of the étale sheaf
of rings OY,ét can be identified as a ring). Define X̄ := Ȳ ×Y X, and let F̄ the inverse image of F under
X̄ → X. Then the canonical homomorphism(

Rqf∗(F)
)
ȳ
→ Hq

ét(X̄, F̄)

is an isomorphism for all q ≥ 0.

Proof. Since Rqf∗ is the sheafification of the pre-sheaf U 7→ Hq
ét(U ×Y X,F), we see that(

Rqf∗(F)
)
ȳ

= colim
Y ′→Y affine étale nbd of ȳ

Hq
ét(X ×Y Y

′,F).

However, we have that

lim
Y ′→Y affine étale nbd of ȳ

X ×Y Y ′ ∼= X ×Y
(

lim
Y ′→Y affine étale nbd of ȳ

Y ′
)
∼= X ×Y Ȳ .

The result then follows from the theorem, noting that X ×Y Y ′ for Y ′ → Y affine étale is quasi-compact and
quasi-separated over Y ′ since f : X → Y is quasi-compact and quasi-separated.

A simple computation of the cohomology groups Hq
ét(X̄, F̄) yields the following result.

Corollary 3.4.2. Let f : X → Y a finite morphism of schemes and F ∈ AbShvét(X). Then

1. For each geometric point ȳ of Y , we have

(f∗F)ȳ ∼=
∏

x̄∈f−1(ȳ)

Fx̄.

2. f∗F commutes with arbitrary base change, i.e. if g : Y ′ → Y is arbitrary and we have a pull-back square

X ′ Y ′

X Y,

f ′

g′ g

f

y

then we have a natural isomorphism g∗(f∗F) ∼= f ′∗(g
′∗F).
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3. Rqf∗(F) = 0 for all q ≥ 1. Thus f∗ is exact when it is finite, and we have canonical isomorphisms

Hq
ét(Y, f∗F) ∼= Hq

ét(X,F).

This corollary also relies on the following lemma, which can be established by a simple computation.

Lemma 3.5. Suppose A is strictly Henselian. Let s : SpecA/m→ SpecA be the closed point of SpecA, viewed
as a geometric point. Then, there is a functorial isomorphism

Fs ∼= H0(SpecA,F) and Hq(SpecA,F) = 0 ∀ q ≥ 1,

for all F ∈ AbShvét(SpecA).

As another application of the above two theorems, we describe the Galois action on an abelian sheaf over a
k-scheme X. Let k̄ be the separable algebraic closure of k.

Proposition 3.6. Let f : X → k be some map, and let F ∈ AbShvét(X). The Gal(k̄/k)-action coming from
the structure of Rqf∗(F) as an étale k-sheaf induces a Gal(k̄/k)-action on the geometric fibre Rqf∗(F)k̄. This
action coincides with the action of Gal(k̄/k) on the cohomology Hq

ét(X ×k k̄,Fk̄) (induced by cohomological
pull-back by (1× σ) : X ×k k̄ → X ×k k̄ for σ ∈ Gal(k̄/k)), under the isomorphism(

Rqf∗(F)
)
k̄
∼= Hq

ét(X ×k k̄,Fk̄).

We finish this section with a description of Noetherian descent.

Definition. For P a set of primes, a P -sheaf is a torsion sheaf whose torsion-orders are not divisible by primes
in P .

Theorem 3.7 (Noetherian Descent). Let S be a quasi-compact and quasi-separated scheme and P a set of
primes.

1. There exists an inverse system of Noetherian schemes {Si} with affine transition maps such that S ∼=
limi Si. Moreover, the Si may be taken to be finite type over Z.

2. For such a system {Si} as above, any P -sheaf F ∈ AbShvét(S) is a colimit of P -sheaves {Fλ} ⊂
AbShvét(S) such that each Fλ is a pull-back under the canonical morphism S → Si of a constructible
P -sheaf on some AbShvét(Si).

3. For any quasi-separated finite-type S-scheme X there exists a closed immersion X ↪→ X̄ into a finitely
presented S-scheme X̄. If X is separated over S, then X̄ can be chosen to be separated over S as well.

4. For X a quasi-separated finite-type S-scheme, and for {Si} a Noetherian cover as in (1), there exists i0
and a finite type Si0-scheme X̄i0 such that X̄ ∼= X̄i0 ×Si0 S. Defining X̄i := Si ×Si0 X̄i0 for all i such

that i0 → i, the map X̄i → Si is separated (resp. proper) for some large enough i if and only if X̄ → S is
separated (resp. proper).

As usual the proof is omitted.

3.2 Smooth and Proper Base Change

Consider a Cartesian square

X ′ S′

X S,

f ′

g′ g

f

y

and a sheaf F ∈ AbShvét(X). Then, there is a natural base-change map

g∗
(
Rqf∗(F)

)
→ Rqf ′∗(g

′∗F).

There are two perspectives to take on the construction of this base-change map.
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• The sheafification of the pull-back maps

Hq
ét(f

−1(U),F)→ Hq
ét

(
f ′
−1(

g−1(U)
)
, g′
∗F
)

= Hq
ét

(
g′
−1(

f−1(U)
)
, g′
∗F
)

for étale U → S yields a map
Rqf∗F → (g∗ ◦Rqf ′∗ ◦ g′

∗
)(F).

By the (g∗, g∗)-adjunction, we then get a map

(g∗ ◦Rqf∗)(F)→ (Rqf ′∗ ◦ g′
∗
)(F).

• We have a natural map F 7→ g′∗(g
′∗F) adjoint to the identity on g′

∗F . Composing with f∗, we get a
natural map f∗F → f∗g

′
∗(g
′∗F) = g∗f

′
∗(g
′∗F). By the (g∗, g∗)-adjunction, we then get a map

(g∗ ◦ f∗)(F)→ (f ′∗ ◦ g′
∗
)(F).

This then induces a map of (universal) δ-functors

g∗R•f∗ → R•f ′∗ ◦ g′
∗
,

which is the base-change map.

In many nice cases, this base-change map is an isomorphism. The significance of such base-change isomor-
phisms is that they give isomorphisms on cohomology, since recall that the higher direct images are sheafifications
of cohomology.

Theorem 3.8 (Proper Base Change). Let S be a scheme, and f : X → S a proper map. Let F ∈ AbShvét(X)
a torsion sheaf. For any Cartesian square

X ′ S′

X S,

f ′

g′ g

f

y

the natural base-change map
g∗
(
Rqf∗(F)

)
→ Rqf ′∗(g

′∗F)

is an isomorphism for all q ≥ 0.

We omit the proof of this (c.f. [Con, Theorem 1.3.4.1] or [Sta22, Tag 095S]).

Corollary 3.8.1. Let f : X → S be proper, F ∈ AbShvét(X) a torsion sheaf, and let s̄ : Spec k̄ → S a geometric
point of S. Denote X ×S,s̄ Spec k̄ =: Xs̄. Then, for all q ≥ 0, the fibre of Rqf∗(F) at s̄ is Hq

ét(Xs̄,F|Xs̄).

Corollary 3.8.2. Let f : X → S be a proper morphism all of whose fibres have dimension ≤ n. Then,
Rqf∗(F) = 0 for all q > 2n and for all torsion sheaves F ∈ AbShvét(X).

The following corollary is very important, for instance for the inclusions Q̄ ↪→ C or Q̄ ↪→ Q̄`.

Corollary 3.8.3. Suppose k and k′ are separably closed fields with k ⊂ k′. Let X be a proper k-scheme and
X ′ := X ×k k′. Write p : X ′ → X for the projection morphism. Then,

Hq(X,F) ∼= Hq
(
X ′, p−1(F)

)
for all q ≥ 0 and all torsion sheaves F ∈ AbShvét(X).

We now move onto the smooth base change theorem; for the proof see [Con, Theorem 1.3.5.2] (though there
is a typo in his statement of the theorem) or [Sta22, Tag 0EYQ].

Theorem 3.9 (Smooth Base Change). Suppose S a scheme and f : X → S a quasi-compact and quasi-separated
morphism. Let F ∈ AbShvét(X) be a torsion sheaf whose torsion-orders are invertible on S. Consider a
Cartesian square

X ′ S′

X S,

f ′

g′ g

f

y

with S′ = limi Si where {Si} is an inverse system of smooth S-schemes such that the transition maps Si → Sj
are affine. Then, the natural base-change map

g∗
(
Rqf∗(F)

)
→ Rqf ′∗(g

′∗F)

is an isomorphism for all q ≥ 0.
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Remark 3.10. Notice that g need not actually be a smooth map, but more generally can be the limit of smooth
maps.

Corollary 3.10.1. If K/k is an extension of separably closed fields and X is a k-scheme, then we have natural
isomorphisms

Hq
ét(X,F) ∼= Hq

ét(XK ,F|XK )

for all q ≥ 0 and all torsion sheaves F whose torsion orders are relatively prime to the characteristic.

Example 3.11. It is necessary that the torsion orders of F are invertible on S. Suppose k is an algebraically
closed field of characteristic p > 0. Let K/k be a non-trivial field extension; since k is perfect K is the limit of
smooth k-algebras. We claim that the base-change morphism

H1
ét(A1

k,Z/pZ)→ H1
ét(A1

K ,Z/pZ)

is not an isomorphism. Indeed, Corollary 2.64.2 implies that for any field F of characteristic p, we have

H1
ét(A1

F ,Z/pZ) ∼= coker
(
F [t]→ F [t], f 7→ fp − f

)
.

Thus, one checks that the base-change morphism is the obvious map

k[t]

{fp − f : f ∈ k[t]}
↪→ K[t]

{fp − f : f ∈ K[t]}
,

and this is not an isomorphism since it isn’t surjective (atp−1 is not in the image of the base-change morphism
whenever a ∈ K \ k).

3.3 More on the Shriek-Pushforward, and Cohomology with Compact Supports

For f : X → S étale, recall the functor f! : AbShvét(X) → AbShvét(S) that is left-adjoint to to the pull-back.
We write down a few more properties (see [FK88, Lemma 8.2] for proofs).

Lemma 3.12. Suppose f : X → S étale.

1. f! sends constructible sheaves to constructible sheaves.

2. Suppose y : Spec k̄ → Y be a geometric point of Y . Then there is a canonical isomorphism

f!(F)y ∼=
∏

x:Spec k̄→X,f(x)=y

Fx.

3. f! is exact and compatible with arbitrary colimits.

4. If g : Y → Z is étale, then (g ◦ f)! = g! ◦ f! as functors (on the nose).

5. If we are given arbitrary g : Z → Y , and suppose we have the induced projection maps f̂ : X ×Y Z → Z
and ĝ : X ×Y Z → X. Then the functors g∗ ◦ f! is naturally isomorphic to f̂! ◦ ĝ∗.

We now justify the use of the term “extension by zero” [FK88, Lemma 8.3].

Lemma 3.13. Let j : X → Y be an open embedding, F ∈ AbShvét(X), and G ∈ AbShvét(Y ). Then G
is canonically isomorphic to j!F if and only if F ∼= j∗G and the restriction of G to the complement Y \ jX
vanishes.

We now sweep a lot of details under the rug in the following definition; to see that the following definition
is actually well-defined, one needs to use derived functor arguments and the proper base change theorem (see
[FK88, Section 8] for a complete proof).

Definition. Suppose f : X → S be a morphism. It is compactifiable over S if there is a commutative diagram

X X̄

S

j

f
f̄

where j is an open embedding and f̄ is a proper morphism. Such a triple (X̄, j, f̄) is said to be a compactification
over S.
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Example 3.14. All quasi-projective morphisms are compactifiable. If X is compactifiable over S, then X is
separated and of finite type over S.

The following two theorems (black-boxed) tell us that all nice enough morphisms are compactifiable.

Theorem 3.15 (Nagata’s Compactification Theorem). If S is quasi-compact and quasi-separated, then X is
compactifiable over S if and only if X is separated and of finite type over S.

Theorem 3.16 (Zariski’s Main Theorem). Suppose S is quasi-compact and separated, and suppose f : X → S
is separated, quasi-finite, and finitely presented. Then X is compactifiable over S, and moreover there is a
compactification (X̄, j, f̄) of f such that f̄ is finite.

Definition. Suppose f : X → S is a separated and finite type map of schemes, with S quasi-compact and
quasi-separated. All of our functors here are restricted to the category of torsion sheaves.

Pick any compactification (X̄, j, f̄) of f over S. The (derived) shriek pushforward is the functor

Rf! := (Rf̄∗) ◦ j! : D+AbShvtorét (X)→ D+AbShvtorét (S).

The higher direct images with proper support R•f! are the terms in the δ-functor R•f̄∗ ◦ j! on the category
AbShvtorsét (X) of torsion sheaves; equivalently, they are the n-th cohomologies of Rf!. This definition is inde-
pendent of j and X̄.

If S = Spec k for k separably closed, we also write H•c,ét for R•f̄∗ ◦ j!, i.e.

H•c,ét := H•ét(X̄, j!F)

for all torsion abelian sheaves F . We write RΓc(X,−) for the composition Γ(S,−) ◦ Rf!.
If S is not quasi-compact nor quasi-separated, then by glueing on open affines we can also define R•f! and

H•c,ét.

Remark 3.17. Despite the abuse of notation, R•f! is NOT the classical derived functor (in the sense of universal
δ-functors) associated to the exact functor f!, and Rf! is NOT the total derived functor of ‘f!’.

Lemma-Definition. For any compactifiable morphism f : X → S, the functor

f! : AbShvtorsét (X)→ AbShvtorsét (S)

given by
f!(F) := (R0f!)(F)

is called the shriek-pushforward by f .
If f is étale, this coincides with the previous definition for the shriek-pushforward. In other words, if f is

étale, then Rf! defined previously coincides with the induced functor f! : AbShvtorsét (X)→ AbShvtorsét (S).

Definition. Suppose s ∈ F(U) where U → S is étale and F ∈ AbShvét(S). Let V be the largest Zariski open
in U such that s|V = 0. The support of s is supp(s) := U \ V .

Clearly, supp(s) is a scheme, with a closed embedding into U .

Lemma 3.18. For any compactifiable morphism f : X → S, the sheaf f!(F) for F ∈ AbShvtorsét (X) is a
subsheaf of f∗(F) via

f!(F)(U) = {s ∈ F(U ×S X) : supp(s)→ U is proper} .

Lemma 3.19. If f is proper, then f! = f∗.

Proposition 3.20. If f : X → S is étale, then Rnf! = 0 for all n ≥ 1.

The shriek-pushforward has the following nicer properties when compared to the direct pushforward (see
[Con, Remark 1.3.6.2] and [FK88, Theorems 8.7-8.10]).

Theorem 3.21. Let f : X → S be compactifiable.

1. ( Base Change) Let g : T → S, and consider the projections g′ : T ×S X → X and f ′ : T ×S X → T .
Then, f ′ is compactifiable, and there is a natural base change isomorphism of δ-functors

g∗ ◦R•f!
∼= R•f ′! ◦ g′

∗

from AbShvtorsét (X)→ AbShvét(T ).

In terms of derived categories, we have a natural isomorphism of (derived)-functors g∗ ◦ Rf! = Rf ′! ◦ g′
∗
.
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2. ( Proper Pullback) If h : Y → X is proper, then there is a canonical pullback map R•f! → R•h! ◦ h∗. In
terms of derived functors, there is a natural transformation Rf! → Rh! ◦ h∗.

3. ( Composition) Suppose f : X → Y and g : Y → S, and let h = g ◦ f : X → S. Let g and h be
compactifiable. Then, f is compactifiable and there is a spectral sequence

Rqg! ◦Rpf! ⇒ Rp+qh!.

In terms of derived functors, we have Rh = Rg ◦ Rf .

4. ( Excision) Let f : X → S be a compactifiable map, j : U → X an open embedding, and i : A → X a
closed embedding. Suppose, as underlying sets, that i(A) t j(U) = X. For each F ∈ AbShvtorsét (X), there
is a functorial long exact sequence

0→ (f◦j)!(j
∗F)→ f!F → (f◦i)!(i

∗F)→ R1(f◦j)!(j
∗F)→ R1f!F → R1(f◦i)!(i

∗F)→ R2(f◦j)!(j
∗F)→ · · · .

5. If F ∈ AbShvtorsét (X) is constructible, then Rnf!(F) is constructible for all n ≥ 0. More generally,
Rnf!(F•) is constructible for any complex of sheaves F ∈ D+AbShvtorsét (X) whose cohomology sheaves
are constructible.

6. If X is a compactifiable k-scheme where k is separably closed, then Hn
c,ét(X,F) is a finite group and it

vanishes for n > 2 dim(X).

7. Suppose f is smooth and proper, and F an LCC torsion sheaf on X with torsion orders invertible on
S. Then, all sheaves Rnf!F = Rnf∗F are LCC sheaves as well for all n ≥ 0. Its formation moreover
commutes with arbitrary base change.

8. Let F ∈ AbShvtorsét (X), and let dim(X/S) be the maximum of the dimensions of all geometric fibres of f .
Then

Rnf!(F) = 0

for all n > 2 dim(X/S).

3.4 Comparing Singular and Étale Cohomology

Definition. Suppose X is a C-scheme locally of finite type. Endow the set X(C) with the topology given by
the basis

{x ∈ U(C) : |fi(x)| < ε for all i = 1, ..., r}

where U ⊂ X is Zariski-open, f1, ..., fr ∈ Γ(U,OX), and ε > 0 arbitrary. Let Xan be this topological space
regarded as a complex analytic space.

The following propositions appear in section 11 of chapter 1 of [FK88].

Proposition 3.22. If f : X → X ′ is an arbitrary morphism of schemes locally of finite over C, then the induced
map fan : Xan → X ′

an
(given pointwise by f : X(C) → X ′(C)) is in fact holomorphic as a map of complex

analytic spaces.
If f is moreover étale, then fan is a local isomorphism of complex analytic spaces.
The map f is an isomorphism of C-schemes if and only if fan : Xan → X ′

an
is an isomorphism of complex

analytic spaces.

Proposition 3.23. The natural morphism of locally ringed spaces Xan → X induced by the functor (−)an

induces an isomorphism
Hom(X,Z) ∼= Hom(Xan, Z)

for all locally ringed spaces Z, where the Homs are in the category of locally ringed spaces.

For a complex analytic space Z, we can define the site Et(Z) whose underlying category is the category of
all complex analytic spaces q : Y → Z over Z for which q is a local isomorphism.

Proposition 3.24. The functor ι = ιX : Schét
S → Et(San) given by (X → S) 7→ (Xan → San) is a fully-faithful

embedding.
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Now that we have the morphism of sites ι defined above, we get maps induced on the category of sheaves in
both directions, which we denote by

(−)an : Shvét(X)→ Shv(Et(Xan))

and
(−)al : Shv(Et(Xan))→ Shvét(X)

for ‘analytification’ and ‘algebraization’. It is a fact that (−)an is an exact functor left-adjoint to the left-exact
functor (−)al. In fact, (−)an commutes with all colimits and all finite direct limits.

Proposition 3.25. Let F ,G ∈ Shvét(X). Then the map

HomShvét(X)(F ,G)→ HomShv(Et(X))(Fan,Gan)

induced by (−)an is injective. If G is constructible, then it is bijective.

Theorem 3.26. Let f : X → Y be a morphism of schemes, and let F ∈ AbShvtorét (X).

1. We have canonical isomorphisms
(
Rnf!(F)

)
an
∼= Rn(fan)!(F) and Hn

c (X,F) ∼= Hn
c (Xan,Fan). In the

derived setting, for any F ∈ D+AbShvtorsét (X) we have natural isomorphisms(
Rf!(F)

)
an
∼= R(fan)!(F)

of complexes in DAbShv(Xan).

2. If F is constructible, then we have the canonical isomorphism
(
Rnf!(F)

)
an
∼= Rn(fan)!(F).
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4 `-adic Sheaves and Cohomology

We have thus seen that torsion sheaves behave very nicely under higher direct images and under cohomology.
However, we would like to have a good theory of cohomology for sheaves with coefficients in characteristic zero,
since we would like to have non-torsion cohomology groups. We thus need to give a ‘better’ definition for étale
cohomology valued in Q`. We fix a prime ` throughout.

Remark 4.1. We only work with the `-adic integers, though one can develop a fully analogous theory for an
arbitrary complete local Noetherian rings. This is what Brian Conrad does in Section 1.4 of his notes [Con].

4.1 Commutative Algebra Setup

Recall that a projective system F = (Fn, un : Fn → Fn−1)n∈Z of torsion Z`-modules is a collection of torsion
Z`-modules Fn equipped with morphisms un : Fn → Fn−1. We say that a projective system is bounded below
if there is some n0 ∈ Z such that Fn = 0 for all n ≤ n0. For each r ∈ Z we can also define the shifted projective
system F [r] = (F ′n, u

′
n) such that F ′n = Fn+r and u′n = un+r. A morphism of projective systems is a collection

of Z` morphisms Fn → Gn such that

· · · Fn+1 Fn Fn−1 · · ·

· · · Gn+1 Gn Gn−1 · · ·

commutes.

Remark 4.2. The category of projective systems PSTB(Z`) of torsion Z`-modules bounded below is an abelian
category. The shift functors F 7→ F [r] are an additive exact functor for all r ∈ Z.

Definition. Suppose F ∈ PSTB(Z`) is a projective system of torsion Z`-module bounded below.

1. F satisfies the Mittag-Leffler condition (or ML condition) if for every n ∈ Z there exists t ≥ n such that

Im(Fm → Fn) = Im(Ft → Fn)

for all m ≥ t.

2. F satisfies the Mittag-Leffler-Artin-Rees condition (or MLAR condition) if there exists t ≥ 0 such that

Im(F [r]→ F ) = Im(F [t]→ F )

for all r ≥ t.

3. F is a null-system if there is t ≥ 0 such that F [t]→ F is the zero mapping.

The following lemmas are straightforward.

Lemma 4.3. A projective system (Fn) ∈ PSTB(Z`) in which all the Z`-modules Fn have finite length automat-
ically satisfies the ML condition.

Lemma 4.4. For a short exact sequence of projective systems

0→ (Fn)→ (Gn)→ (Hn)→ 0

in PSTB(Z`), if (Fn) satisfies the ML condition, then the sequence

0→ lim
n
Fn → lim

n
Gn → lim

n
Hn → 0

is exact.

Definition. The A-R category of projective systems AR(Z`) is the category whose objects are projective systems
of torsion Z`-modules bounded below, and whose hom sets are

HomAR(F,G) = colimr≥0Hom(F [r], G).

If f ∈ HomAR(F,G) and g ∈ HomAR(G,H) are represented by f : F [r] → G and g : G[s] → H, then g ◦ f is
represented by g ◦ (f [s]) : F [r + s]→ H.
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Here, notice that the maps Hom(F [r], G)→ Hom(F [r+1], G) is induced by the natural maps F [r+1]→ F [r]
given by un+r+1 : Fn+r+1 → Fn+r.

Remark 4.5. The A-R stands for Artin-Rees.

Remark 4.6. The A-R category is an abelian category, where the kernel and cokernel in the A-R category are
the kernel and cokernel in the original category PSTB(Z`).
Remark 4.7. A morphism in the A-R category is an isomorphism if and only if its kernel and cokernel are
null-systems.

If F is a projective system, then we obviously have limn Fn ∼= limn Fn+r, and so the limit

F 7→ lim
n
Fn

is naturally a functor from the A-R category of projective systems to the category of Z`-modules. The previous
lemma then shows that the limit functor is exact on the subcategory of projective systems consisting of finite
modules.

Definition. A projective system F = (Fn, un) is an `-adic system if the following conditions hold:

• Fn = 0 for n < 0;

• `n+1Fn = 0 for all n (so that Fn is naturally a Z/`n+1Z-module);

• for all n ≥ 1, the morphism un induces an isomorphism

Fn ⊗Z/`n+1Z Z/`nZ = Fn/`
nFn

'−−−−−−−→
un mod `n

Fn−1

of Z/`nZ-modules;

• Fn is a module of finite length for all n ≥ 0.

A projective system is A-R `-adic if it is A-R isomorphic to an `-adic system.

The following lemma is straightforward.

Lemma 4.8. If F is an `-adic system and G a projective system with `n+1Gn = 0 for all n, then

Hom(F,G) = HomAR(F,G).

We now state an important result from commutative algebra.

Proposition 4.9 (Artin-Rees Lemma). If I is an ideal in a Noetherian ring R, and if M is a finitely generated
R-module and N a submodule of M , then there exists k ≥ 1 so that for all n ≥ k, we have

InM ∩N = In−k(IkM ∩N)

We now define a functor going from finitely generated Z`-modules to the category of `-adic systems. If M
is a finitely generated Z`-module, then set Mn := M/`n+1M . We have natural ‘mod `’ maps Mn →Mn−1, and
so we get a projective system (Mn). It is easy to see that (Mn) is an `-adic system. The following corollary is
an immediate consequence of the Artin-Rees Lemma.

Corollary 4.9.1. Suppose M → N is a morphism of Z`-modules. Let K = ker(M → N) and C = coker (M →
N). Then, the `-adic systems (Kn) and (Cn) constructed as above are A-R isomorphic to ker((Mn) → (Nn))
and coker ((Mn)→ (Nn)), the latter kernels and cokernels being taken in the category of A-R `-adic projective
systems.

As a result, we get the following.

Proposition 4.10. If F is an `-adic system and M := limn Fn, then M is a finite Z`-module and

Fn ∼= M/`n+1M.

Thus the limit functor establishes an equivalence between the full subcategory of the A-R category consisting of
all A-R `-adic systems, and the category of all finitely generated Z`-modules.

The category of A-R `-adic projective systems is an exact subcategory of the A-R category, i.e. kernels and
cokernels of an A-R morphism of A-R `-adic systems are again `-adic systems.

Moreover, if 0 → F → G → H is a short exact sequence in the A-R category such that F and H are A-R
`-adic and there exists t such that `n+tGn = 0 for all n, then G is also A-R `-adic.
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Proposition 4.11. Consider a projective system of complexes of Z`-modules (K•n) such that K•n = 0 for n < 0,
satisfying the following conditions:

• `n+1Ki
n = 0 for all i, so that K•n is naturally a complex of Z/`n+1Z modules;

• each Ki
n is flat over Z/`n+1Z;

• the complexes are uniformly bounded, i.e. there exists r > 0 such that Ki
n = 0 for all n and all |i| > r;

• the cohomology modules Hi(K•n) are finite;

• the map K•n → K•n−1 induces a quasi-isomorphism

K•n ⊗Z/`n+1Z (Z/`nZ)→ K•n−1

for all n ≥ 1.

Then, there is a bounded complex K• of finitely generated free Z`-modules together with quasi-isomorphisms

K•/`n+1K• → K•n

for which the diagram

K•/`n+1K• K•n

K•/`nK• K•n−1

is homotopy-commutative. Moreover, for each i the projective systems (Hi(K•n))n∈Z of cohomology modules are
A-R `-adic.

4.2 `-adic sheaves

Throughout, suppose X is a scheme on which ` is invertible. Analogous to the above definitions for Z`-modules,
we can say what it means for a projective system to satisfy the ML condition, the MLAR condition, and what it
means for a system to be null. We can also define the A-R category of projective systems F = (Fn) of `-torsion
abelian étale sheaves, i.e. each sheaf Fn ∈ AbShvtorsét (X) are `-torsion, so that

Fn =
⋃
m

ker(Fn
`m−−→ Fn)

and we also assume that this projective system is bounded below. For two systems F = (Fn) and G = (Gn) of
`-torsion sheaves, we define

HomAR(F ,G) = colimr≥0Hom(F [r],G).

We extend the definition of `-adic systems to sheaves:

Definition. A projective system of (Fn)n∈Z of abelian étale sheaves on X is an `-adic sheaf if

• each sheaf Fn is constructible;

• we have Fn = 0 for n < 0 and `n+1Fn = 0 for n ≥ 0;

• the morphisms Fn → Fn−1 induce isomorphisms

Fn ⊗Z/`n+1Z Z/`nZ = Fn/`n
'−→ Fn−1

for all n ≥ 1.

A system F is an A-R `-adic sheaf is it is A-R isomorphic to an `-adic sheaf, i.e. there exists an `-adic sheaf G
and a morphism of projective systems G[r]→ F such that the kernel and cokernel are null systems.

An `-adic F = (Fn) is locally constant or lisse if all of the sheaves Fn are locally constant.

Lemma 4.12. If F = (Fn) is an `-adic sheaf and G a projective system such that `n+1Gn = 0, then we have

HomAR(F ,G) = Hom(F ,G).
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Example 4.13. If M is a finitely generated Z`-module, then the projective system MX =
(
M/`n+1M

X

)
is an

`-adic sheaf. It is clear that MX is locally constant.

Example 4.14. Let µ`n,X := ker(Gm,X
`n−→ Gm,X) be the étale sheaf of `n-th roots of unity. Then,

Z`(m) :=

(
µ⊗m`n+1,X ;µ⊗m`n+1,X

ζ1⊗···⊗ζm 7→ζ`1⊗···⊗ζ
`
m−−−−−−−−−−−−−−−→ µ⊗m`n,X

)
is a lisse `-adic sheaf.

We can also define, for m < 0, the étale sheaf

µ⊗m`n,X := Hom(µ
⊗|m|
`n,X ,Z/`

nZ
X

)

on X, and thus we can define the lisse `-adic sheaf

Z`(m) :=
(
µ⊗m`n+1,X

)
.

Example 4.15. Let F be a constructible `-torsion étale sheaf with `mF = 0. The (stationary) system

Fn :=

{
F/`n+1F n ≥ 0

0 n < 0

is an `-adic system. The functor F 7→ (Fn)n identifies the category of constructible `-torsion sheaves with a
full-subcategory of all `-adic sheaves.

The following result is useful to carry out Noetherian induction.

Lemma 4.16. Suppose F is a projective system of sheaves with `n+1Fn for n ≥ 0 and Fn = 0 for n < 0. Then
F is an A-R `-adic sheaf if and only if

• F satisfies the MLAR condition, i.e. there is an r > 0 such that

im (F [t]→ F) = im (F [r]→ F) =: F̄

for all t ≥ r; and

• there is an integer s ≥ 0 with
F̄n+t/`

n+1F̄n+t
∼= F̄n+s/`

n+1F̄n+s

for all n ≥ 0 and all t ≥ s.

Moreover, if the two conditions hold, then in fact (F̄n+s/`
n+1F̄n+s) is an `-adic sheaf isomorphic to F .

As a consequence, the following results hold.

1. F is an A-R `-adic sheaf if and only if it is an `-adic sheaf locally with respect to the étale topology.

2. If A is a closed subscheme and U an open subscheme of X such that AtU = X, then F is an A-R `-adic
sheaf iff (Fn|U ) and (Fn|A) are A-R `-adic.

3. Suppose X is connected and the Fn are constructible and locally constant. Suppose s̄ is a geometric point
of X. Then, F is an A-R `-adic sheaf if and only if the projective system

(
(Fn)s̄

)
is an A-R `-adic system

of Z`-modules.

Definition. If F is an A-R `-adic sheaf, and s̄ a geometric point of X, then we define its stalk to be

Fs̄ = lim
n

(Fn)s̄,

which is a Z`-module.

Lemma 4.17. An A-R `-adic sheaf F vanishes in the A-R category (i.e. is a null system) if and only if all of
its stalks vanishes.

The following is Example 1.4.4.5 of [Con].

Proposition 4.18. If X is connected and x̄ a geometric point of X, then the stalk functor at x̄ establishes an
equivalence of categories between lisse `-adic sheaves and continuous linear representations of π1(X, x̄) on finite
Z`-modules.
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The following is Proposition 12.10 of [FK88].

Proposition 4.19. Let F be an `-adic sheaf on X. Then there is a Zariski-dense open subscheme U for which
the restricted system F|U := (Fn|U ) is locally constant.

The following is Proposition 12.11 of [FK88].

Proposition 4.20. The category of A-R `-adic sheaves is an exact subcategory of the A-R category, i.e. kernels
and cokernels of an A-R morphism of A-R `-adic systems are again `-adic systems.

Moreover, if 0 → F → G → H is a short exact sequence in the A-R category such that F and H are A-R
`-adic and there exists t such that `n+tGn = 0 for all n, then G is also A-R `-adic.

The following is Proposition 12.13 of [FK88].

Proposition 4.21. For every `-adic sheaf G there is an ordinary étale `-torsion sheaf H ∈ AbShvtorsét (X), a

torsion free `-adic sheaf F = (Fn) (i.e. F `−→ F is A-R injective) such that each Fn is (Z/`n+1Z)-flat, and an
A-R exact sequence

0→ H→ G → F → 0.

Analogous to the previous subsection, we have the following result (Lemma 12.14 of [FK88]) which allows
us to construct many examples of A-R `-adic sheaves.

Proposition 4.22. Let (K•n) be a projective system of complexes of sheaves, such that the following hypotheses
hold:

• `n+1K•n = 0 for all n ≥ 0, and K•n = 0 for n < 0;

• Kin are (Z/`n+1Z)-flat;

• the cohomology sheaves Hi(K•n) are constructible;

• there is an r > 0 such that Kin = 0 for all n and all |i| > r;

• the map K•n → K•n−1 induces a quasi-isomorphism

K•n ⊗Z/`n+1Z Z/`nZ = K•n/K•n → K•n−1.

Then for each i ∈ Z the projective systems
(
Hi(K•n)

)
n

of cohomology sheaves are A-R `-adic sheaves.

4.3 Cohomology of `-adic sheaves

As in the previous section, we fix a prime `. Throughout, we only consider those schemes on which ` is invertible.
Suppose F : AbShvtorsét (X) → AbShvtorsét (Y ). Then, we can extend F to becomes a functor from the

category AR`(X) of A-R `-adic sheaves on X to the category AR`(Y ) of A-R `-adic sheaves on Y , by defining
it component-wise

F (Fn) := (FFn).

It is easy to see that properties of F : AbShvtorsét (X)→ AbShvtorsét (Y ) transfer to properties of F : AR`(X)→
AR`(Y ). Thus for instance, for any morphism f : X → Y of Noetherian schemes, we have

• the pull-back functor f∗ : AR`(Y )→ AR`(X), which is exact and sends `-adic sheaves to `-adic sheaves;

• the direct image functors Rif∗ : AR`(X)→ AR`(Y ); and

• for compactifiable f the direct image functor with compact support Rif! : AR`(X)→ AR`(Y ).

The last functor is a non-trivial result, the proof of which requires the use of the Godement resolution.

Theorem 4.23. Suppose f : X → Y is a compactifiable mapping, and F = (Fn) an A-R `-adic sheaf on X.
Then the system Rif!(F) is an A-R `-adic sheaf for each i ≥ 0.

In this way, the system of functors (Rif∗) and (Rif!) each form a system of δ-functors on the A-R categories.

Lemma 4.24. If f : X → Y and g : Y → Z then for each F ∈ AR`(X) we have a spectral sequence

Rqg∗ ◦Rpf∗(F)⇒ Rp+q(g ◦ f(F))∗,

functorial in F . If f , g, and g ◦ f are all compactifiable, then we also have

Rqg! ◦Rpf!(F)⇒ Rp+q(g ◦ f(F))!

functorially in F ∈ AR`(X).
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Similarly, the base-change theorems carry over to the category of A-R `-adic sheaves.

Definition. For a scheme X (on which ` is invertible) over a separably closed field k̄, the ordinary cohomology
of an A-R `-adic sheaf

cohomology with compact supports of an A-R `-adic sheaf F = (Fn) is given by

Hi
c,ét(X,F) := lim

n
Hi
c,ét(X,Fn).

These are finitely generated Z`-modules.

One can also compare singular cohomology with the above defined cohomology of (AR) `-adic sheaves,
though we omit this. See [FK88].

4.4 Sheaves of Q`-Vector Spaces

In this section, we describe the ‘quotient’ category of the category of all A-R `-adic sheaves by the subcategory
of `-torsion sheaves.

Definition. The category Vecét
` (X) of sheaves of Q`-vector spaces is the category in which

• the objects are the same as in the A-R category of projective systems F = (Fn) of `-torsion sheaves,
though we denote such a sheaf F considered as a sheaf of Q`-vector spaces by F ⊗Q`;

• the hom sets are
Hom(F ⊗Q`,G ⊗Q`) := HomAR(F ,G)⊗Z` Q`.

Composition in this category is induced by the composition in the A-R category of projective systems.

This category is an abelian category, and the natural functor from the A-R category into the category of
sheaves of Q`-vector spaces is exact.

Definition. A sheaf of Q`-vector spaces is constructible if it is isomorphic to a sheaf F ⊗Q` for an A-R `-adic
sheaf F . A constructible sheaf of Q`-vector spaces is lisse if the above F is a locally constant (i.e. lisse)
constructible `-adic sheaf.

Example 4.25. For ` invertible on X, the `-adic sheaves Q`(r) := Z`(r)⊗Q` are lisse sheaves of Q`-vector spaces
for all r ∈ Z.

Lemma 4.26. Every constructible sheaf is isomorphic to a sheaf F ⊗Q` with F a torsion free `-adic sheaf.

Theorem 4.27. If X is a connected Noetherian scheme with a geometric point x̄, then the stalk functor at
x̄ gives an equivalence of categories between lisse Q`-sheaves on X and the category of continuous Q`-linear
representations of π1(X, x̄) on finite dimensional Q`-vector spaces.

See [Con, Theorem 1.4.5.4] for the proof.

Corollary 4.27.1. Suppose X is a normal and Noetherian scheme. Then, the property of being a lisse Q`-sheaf
is local for the étale topology on X.

We can extend previous sheaf-theoretic concepts to a sheaf F ⊗Q`Vecét
` (X) by simply tensoring with Q`:

• For s̄ : Spec k̄ → X a geometric point, the stalk is (F ⊗Q`)s̄ := Fs̄ ⊗Q`.

• Γ(X,F ⊗Q`) := Γ(X,F)⊗Q`

• Hi
ét(X,F ⊗Q`) := Hi(X,F)⊗Q`

• Hi
c,ét(X,F ⊗Q`) := Hi

c,ét(X,F)⊗Q`

• Rif∗(X,F ⊗Q`) := Rif∗(X,F)⊗Q`

• Rif!(X,F ⊗Q`) := Rif!(X,F)⊗Q`
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A Abstract Nonsense

A.1 Universal δ-Functors

Definition. A (covariant) cohomological δ-functor between A and B is a collection of additive functors Tn :
A → B (with the convention Tn = 0 for all n < 0) together with morphisms δn : Tn(C)→ Tn+1(A) (called the
connecting morphism) defined for each short exact sequence 0→ A→ B → C → 0 in A, such that

1. for each short exact sequence 0→ A→ B → C → 0, there is a long exact sequence

· · · → Tn−1C
δn−1

−−−→ TnA→ TnB → TnC
δn−→ Tn+1A→ · · · ;

2. for any morphism

0 A B C 0

0 A′ B′ C ′ 0

of short exact sequences 0 → A → B → C → 0 and 0 → A′ → B′ → C ′ → 0 in A, we have the
commutative diagram

TnC Tn+1A

TnC ′ Tn+1A′.

δn

δn

Example A.1. Cohomology gives a cohomological δ-functor H∗ from Ch≥0(A) to A.

Definition. A morphism S∗ → T ∗ of δ-functors is a system of natural transformations fn : Sn → Tn commut-
ing with the δs. In other words, a morphism S∗ → T ∗ of δ-functors is the data of a commutative ladder

· · · SnA SnB SnC Tn+1A · · ·

· · · TnA TnB TnC Tn+1A · · ·

δ δ

δ δ

attached to every short exact sequence 0→ A→ B → C → 0.

Definition. A cohomological δ-functor T is universal if, given any δ-functor S and any natural transformation
f0 : T 0 → S0, there exists a unique morphism T → S of δ-functors extending f0.

Example A.2. If F : A → B is an exact functor, then T 0 = F and Tn = 0 for all n ≥ 1 defines a universal
δ-functor.

The following lemma is obvious from the universality of the above property.

Lemma A.3. Given any additive functor F : A → B, there exists at most one universal δ-functor T ∗ such that
T 0 = F .

Definition. An additive functor F : A → B is effaceable if for every A ∈ A there is a monomorphism A ↪→ J
with F (A ↪→ J) = 0.

Proposition A.4. Let T be a covariant δ-functor from A → B. Suppose for each i > 0 the functor T i is
effaceable. Then, T is a universal δ-functor.

Proof. Suppose given any δ-functor S and any natural transformation f0 : T 0 → S0. Suppose inductively that
each f i : T i → Si for 0 ≤ i < n is defined and that they commute with all the appropriate δis. Given A ∈ A,
let J ∈ A be such that A ↪→ J and Tn(A ↪→ J) = 0; such a J exists since Tn is effaceable. Consider the exact
sequence 0→ A→ J → C → 0 where C = coker (A ↪→ J). We get a commutative diagram

Tn−1J Tn−1C TnA TnJ

Sn−1J Sn−1C SnA SnJ

δn−1
T 0

δn−1
S

fn−1J fn−1C
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where both rows are exact. In particular, we have TnA = coker (Tn−1J → Tn−1C). Consider the map
δn−1
S ◦ fn−1C : Tn−1C → SnA. Pre-composing this with Tn−1J → Tn−1C we get zero since the left square

commutes and since Sn−1J → Sn−1C
δn−1
S−−−→ SnA is the zero map. The universal property of cokernels then

implies the existence of a unique map TnA→ SnA such that the entire diagram above commutes. Thus, we have
a well-defined map fnJA : TnA→ SnA which a priori depends on the choice of J . To see that it is independent
of J , by taking products and noting that T is additive we may suppose that J ↪→ I with Tn(A ↪→ I) = 0.
Then, we have two exact sequences 0→ A→ J → C → 0 and 0→ A→ I → C ′ → 0, and we have a morphism
of exact sequences

0 A J C 0

0 A I C ′ 0.

id

Running through the above argument, it is easy to see that fnJA = fnI A. Hence fnA : TnA → SnA is
independent of the choice of A.

Now, consider an arbitrary morphism s : A→ A′ with J as given above. Consider the fibred coproduct I of
A′ and J over A. Pick a monomorphism I ↪→ J ′ such that Tn(I ↪→ J) = 0. Then, we have A′ ↪→ J ′ satisfies
Tn(A′ ↪→ J ′) = 0. We can thus extend the morphism s to a morphism of exact sequences

0 A J C 0

0 A′ J ′ C ′ 0

s

We get a diagram

TnA′ TnA

Tn−1C ′ Tn−1C

Sn−1C ′ Sn−1C

SnA′ SnA

δn−1
T δn−1

T

Tns

fn−1C′ fn−1CfnA′ fnA

δn−1
S δn−1

S
Sns

in which each small quadrilateral commutes. One then checks that Sns ◦ fnA′ ◦ δn−1
T = fnA ◦Tns ◦ δn−1

T . Since
TnJ = 0 = TnJ ′, it follows that δn−1

T is epic, and so we have Sns◦fnA′ = fnA◦Tns. Therefore, fn : Sn → Tn

is a well-defined natural transformation.
It remains to check that fn commutes with the δn−1s. Consider any short exact sequence 0 → A → B →

C → 0. Choose a monomorphism B ↪→ J for which Tn(B ↪→ J) = 0; then A ↪→ J satisfies Tn(A ↪→ J) = 0.
We then get a map of short exact sequences

0 A B C 0 (SES1)

0 A J C ′ 0 (SES2)

which then yields

Tn−1C TnA Sn−1C SnA

Tn−1C ′ TnA Sn−1C ′ SnA.

δSES1
T

δSES2
T

Tn−1g Sn−1g

δSES2
S

δSES1
S

We thus have the commutative diagram

Tn−1C Tn−1C ′ TnA

Sn−1C Sn−1C ′ SnA

fn−1C fn−1C′ fnA

Sn−1g

Tn−1g δSES2
T

δSES2
S
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which implies that the square

Tn−1C TnA

Sn−1C SnA

fn−1C fnA

δSES1
T

δSES1
S

commutes. This is precisely the statement that fn commutes with δn−1, as required.

Suppose A has enough injectives. If F : A → B is a left exact functor with right derived functors R∗F , then
notice that each RnF is effaceable. This follows since RnF (I) = 0 for all injective I and for all n ≥ 1, and
existence of such I is guaranteed by assumption on A. This yields the following corollary.

Corollary A.4.1. If A has enough injectives, then for any left exact functor F : A → B the right derived
functors R∗F form a universal δ-functor.

Lemma A.5. If A has enough injectives, a functor F : A → B is effaceable if and only if F (I) = 0 for all
injective objects I ∈ A.

Proof. The converse is trivial, and so it suffices to show that F (I) = 0 for an arbitrary injective object I if F
is effaceable. Since F is effaceable, there exists an object A ∈ A and a monomorphism u : I ↪→ A such that
F (u) = 0. We have an exact sequence 0 → I → A → cokeru → 0, and since I is injective this exact sequence
splits. There thus exists a morphism v : A→ I such that vu = idI . Then, we have

idF (I) = F (idI) = F (vu) = F (v) ◦ F (u) = 0,

which is only possible if F (I) = 0.

Proposition A.6. Suppose A has enough injectives and T ∗ is a δ-functor from A to B. Then T ∗ is universal
if and only if Tn is effaceable for all n ≥ 1.

A.2 Generalities on Spectral Sequences

Throughout we fix an abelian category A.

Definition. Suppose A ∈ A. A (decreasing) filtration of A is a family (F pA)p∈Z of sub-objects F pA of A such
that F p+1A ↪→ F pA for all p.

The pth graded piece is grpA = coker (F p+1A ↪→ F pA).
Given filtered objects A and B in A, a morphism u : A → B is said to be compatible with the filtration if

for every p ∈ Z the map F pA ↪→ A
u−→ B factors through F pB ↪→ B.

Definition. A (rightward oriented) spectral sequence in A is a system

E = (E•,•• , E•)

consisting of the data:

• objects Epqr ∈ A for all (p, q) ∈ Z2 and r ≥ 0;

• morphisms dpqr : Epqr → Ep−r+1,q+r
r such that dp−r+1,q+r

r ◦ dpqr = 0;

• isomorphisms αpqr : ker(dpqr )/im (dp+r−1,q−r
r )

∼=−→ Epqr+1, where we assume that for each (p, q) ∈ Z2 the
morphisms dpqr and dp+r−1,q−r

r vanish for all r large enough so that Epqr = Epqr+1 = Epqr+2 = · · · =: Epq∞ for
some sufficiently large r;

• decreasingly filtered objects En ∈ A for n ∈ Z, where we assume that F pEn = En for sufficiently small p
and F pEn = 0 for sufficiently large p;

• isomorphisms βpq : Epq∞
∼=−→ grpE

p+q.

For each r ≥ 0, we call the collection of complexes E•,•r the r’th page of the spectral sequence E. The filtered
objects En are the limit terms of the spectral sequence.

A spectral sequence is called a cohomological spectral sequence if Epq2 = 0 whenever p < 0 or q < 0.

Remark A.7. An upward oriented spectral sequence can be similarly defined by simply swapping the pair of
indices in the superscript Epqr . Thus, rightward oriented spectral sequences (Epqr , E

n) can be made into an
upward oriented spectral sequence (Eqpr , E

n), and vice versa. In order to make explicit the orientation of a
spectral sequence, we write E•,••,→ for a rightward oriented spectral sequence.
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Remark A.8. We use the definition given in [Tam94], though we define both rightward oriented and upward
oriented spectral sequences. One should note that the spectral sequences considered in [Tam94] are all ‘upward-
oriented’ spectral sequences in the sense of [Vak].

Remark A.9. Very often, we only know (canonically) the second page of a spectral sequence (see Grothendieck’s
spectral sequence below, for instance). In such a situation, we write Epq2 ⇒ Ep+q to mean that there is a spectral
sequence E = (E•,•• , E•) whose second page is given by Epq2 and whose limit terms are Ep+q.

Definition. A morphism u : E → E′ of spectral sequences in C is a system of morphisms upqr : Epqr → E′
pq
r and

un : En → E′
n

where the un are compatible with the filtrations of E• and E′
•
, and the upqr and un naturally

commute with dpqr , αpqr , and the βpq.
In this way, the spectral sequences in A form an additive category. It is also easy to see that cohomological

spectral sequences form a full subcategory of the category of spectral sequences. An additive functor from an
abelian category to a category of spectral sequences in a spectral functor.

Lemma A.10. For any cohomological spectral sequence E in A, we have F 0En = En and Fn+1En = 0 for all
n ∈ Z.

Proof. Since Epq2 = 0 for all p < 0 or q < 0, it follows that Epqr = 0 for all p < 0 or q < 0. Thus Epq∞ = 0 for all
p < 0 or q < 0. It follows that grpE

p+q ∼= 0 whenever p < 0 or q < 0. In particular, gr−iE
n = 0 for all i > 0

and all n ∈ Z. This implies that F 0En ∼= F−1En ∼= F−2En ∼= · · · ∼= En. Similarly, grn+iE
n = 0 for all i > 0

and so Fn+1En ∼= Fn+2En ∼= · · · ∼= 0.

Proposition A.11. For any cohomological spectral sequence E in A there are morphisms E0,n
2 → En and

En → En,02 that are functorial in E, called the edge morphisms.
Moreover, the edge morphism E0,n

2 → En factors as E0,n
2 � E0,n

∞ ↪→ En, while the edge morphism En →
En,02 factors as En � En,0∞ ↪→ En,02 .

Proof. We construct the edge morphisms as follows. Since Fn+1En = 0, we have monomorphisms

E0,n
∞
∼= coker (Fn+1En ↪→ FnEn) ∼= FnEn ↪→ En

for all n ∈ Z. For r ≥ 2, we have

E0,n
r+1
∼=

ker(E0,n
r → E−r+1,n+r

r )

im (Er−1,n−r
r → E0,n

r )
∼=

E0,n
r

im (Er−1,n−r
r → E0,n

r )

since E−r+1,n+r
r = 0. In particular, we have an epimorphism E0,n

r � E0,n
r+1 for all r ≥ 2, and so E0,n

2 � E0,n
∞ ↪→

En, giving us the first edge morphism. It is obvious that this morphism is functorial in E.
Since F 0En = En, we have an epimorphism

En = F 0En � F 0En/F 1En ∼= En,0∞ .

Also, for r ≥ 2, we have

En,0r+1
∼=

ker(En,0r → En−r+1,r
r )

im (E−r,n+r−1
r → E0,n

r )
∼= ker(En,0r → En−r+1,r

r ) ↪→ En,0r ,

and thus a monomorphism En,0∞ ↪→ En,02 . The result now follows.

Proposition A.12. Assume that for a cohomological spectral sequence Epq2 ⇒ Ep+q the terms Epq2 vanish for
0 < p < n (q ∈ Z arbitrary). Then, the edge morphism induces an isomorphism E0,m

2
∼= Em for all m < n, and

the sequence
0→ E0,n

2 → En → En,02 → E0,n+1
2 → En+1

2

is exact.

Proof. Note first that
grpE

m ∼= Ep,m−p∞
∼= 0

for all 1 ≤ p ≤ n − 1, and all m < n. Thus F pEm ∼= F p+1Em for all 1 ≤ p ≤ n − 1. If m < n, we then
get F 1Em ∼= Fm+1Em ∼= 0, and so Em ∼= F 0Em ∼= gr0E

m ∼= E0,m
∞ as required. It remains to show the above

sequence is exact.
For r ≥ 2, we have

E0,n
r+1
∼=

ker(E0,n
r → E−r+1,n+r

r )

im (Er−1,n−r
r → E0,n

r )
∼=

ker(E0,n
r → 0)

im (0→ E0,n
r )

∼= E0,n
r .
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Here, we need to use the fact that Er−1,n−r
r = 0 for all r ≥ 2 where it follows for 2 ≤ r ≤ n by assumption,

whereas it follows for r > n as E is cohomological. Thus E0,n
2
∼= E0,n

∞ , and the definition of the edge map then
implies exactness at E0,n

2 .
By Proposition A.11, we know that im (E0,n

2 → En) ∼= E0,n
∞
∼= gr0E

n, and

ker(En → En,02 ) = ker(En → En,0∞ ) ∼= ker(F 0En → grnE
n).

Now, as Epq2 = 0 for 0 < p < n, it follows that Epq∞ = 0 for all p = 1, 2, ..., n − 1. Hence grpE
p+q = 0 for all

1 ≤ p ≤ n− 1 and all q ≥ 0, and so F pEp+q ∼= F p+1Ep+q for all 1 ≤ p ≤ n− 1 and all q ≥ 0. Taking q = n− p,
it then follows that F pEn ∼= F p+1En for all 1 ≤ p ≤ n− 1, and so F 1En ∼= FnEn ∼= grnE

n. Thus

ker(En → En,02 ) ∼= ker(F 0En → F 1En) ∼= gr0E
n ∼= im (E0,n

2 → En).

Exactness follows at En.
Next, we have im (En → En,02 ) ∼= En,0∞ . We describe the map En,02 → E0,n+1

2 : notice that

E0,n+1
r+1

∼=
ker(E0,n+1

r → E−r+1,n+r+1
r )

im (Er−1,n+1−r
r → E0,n+1

r )
∼=

E0,n+1
r

im (Er−1,n+1−r
r → E0,n+1

r )
∼=

{
E0,n+1
r if r 6= n+ 1,

E0,n+1
n+1 /im (dn,0n+1), if r = n+ 1,

for all r ≥ 2. Thus E0,n+1
2

∼= E0,n+1
n+1 and E0,n+1

∞
∼= E0,n+1

n+1 /im dn,0n+1. Similarly, we have for r ≥ 2,

En,0r+1
∼=

ker(En,0r → En−r+1,r
r )

im (En+r−1,−r
r → En,0r )

∼= ker(En,0r → En−r+1,r
r )

{
En,0r if r 6= n+ 1,

ker dn,0n+1 if r = n+ 1,

and so En,02
∼= E0,n+1

n+1 and En,0∞
∼= ker dn,0n+1. The map En,02 → E0,n+1

2 is simply the composition

En,02
∼= En,0n+1

d0,n+1
n+1−−−−→ E0,n+1

n+1
∼= E0,n+1

2 ,

with kernel isomorphic to ker d0,n+1
n+1

∼= En,0∞
∼= im (En → En,02 ). Hence the sequence is exact at En,02 .

Finally, note that im (En,02 → E0,n+1
2 ) ∼= im dn,0n+1 while the kernel of the edge map is

ker(E0,n+1
2 → En+1

2 ) ∼= ker(E0,n+1
2 → E0,n+1

∞ ) ∼= ker(E0,n+1
n+1 → E0,n+1

∞ ) ∼= im dn,0n+1.

Therefore the entire sequence is exact.

Taking n = 1 we have the following corollary.

Corollary A.12.1. For a cohomological spectral sequence Epq2 ⇒ Ep+q, we have the exact sequence

0→ E0,1
2 → E1 → E1,0

2

d1,0
2−−→ E0,2

2 → E2.

This exact sequence is called the five term exact sequence of the spectral sequence Epq2 ⇒ Ep+q.

Corollary A.12.2. In a cohomological spectral sequence Epq2 ⇒ Ep+q, suppose Epq2
∼= 0 for all p > 0. Then

the edge morphism induces an isomorphism E0,n
2
∼= En for all n. In such a case, the spectral sequence is said

to be trivial.

A.3 Grothendieck Spectral Sequence

Throughout, we let C be an abelian category. We state and prove the Grothendieck Spectral Sequence using
the method given in [Vak].

Lemma A.13. Suppose there is an exact sequence 0→ A→ B → C → 0. Let I and J be injectives such that
A ↪→ I and C ↪→ J . Then, there exists an injective K such that B ↪→ K and we have the following commutative
diagram

0 I K J 0

0 A B C 0

in which both rows are exact.
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Proof. Recall that in an abelian category the (finite) product and coproduct coincide. Let K = I × J . Since
A ↪→ B and I is an injective, we have a map B → I. We also have a map B → C → J . The universal property
of products implies that we have a map B → K such that the following diagram except for the map I ↪→ K
commutes.

I K J

A B C

Suppose ι : I ↪→ K and π : K � I. Then π ◦ ι = Id. Denoting the map B → I by f and B → K by g, notice
that π ◦ g = f . It follows that π ◦ g = π ◦ (ι ◦ f), and since π is epic, we have g = ι ◦ f . Hence, the following
diagram commutes.

I K J

A B C

The five lemma then implies that the central arrow is injective, as required.

Applying this lemma inductively to an injective resolution, we get the following corollary.

Corollary A.13.1. Suppose we have an exact sequence 0→ A→ B → C → 0 in C. Let I• and J• be injective
resolutions for A and C respectively. Then, there exists an injective resolution K• for B such that

0 I0 K0 J0 0

0 A B C 0

commutes and such that the complexes fit into the exact sequence

0→ I• → K• → J• → 0.

Given a complex K•, we use the usual notation

Zp(K•) = ker(Kp → Kp+1), Bp(K•) = im(Kp−1 → Kp), and Hp(K•) =
Zp(K•)

Bp(K•)
.

Lemma-Definition. Suppose C• is a complex in an abelian category C, indexed by non-negative integers.
Then, there exists a double complex I•,• satisfying the following properties

• Ip,q is an injective object of C, and moreover Ip,• is an injective resolution of Cp;

• Zp,∗ := Zp(I•,∗) is an injective resolution for Zp(C•);

• Bp,∗ := Bp(I•,∗) is an injective resolution for Bp(C•); and

• Hp,∗ := Hp(I•,∗) is an injective resolution for Hp(C•).

Such a double complex I•,• is the Cartan-Eilenberg resolution of C•.

Proof. Note that for each p ≥ 0 we have exact sequences

0→ Bp(C•)→ Zp(C•)→ Hp(C•)→ 0.

Let Bp,∗ and Hp,∗ be injective resolutions of Bp(C•) and Hp(C•) respectively; then, we can construct an
injective resolution Zp,∗ of Zp(C•) such that

0→ Bp,∗ → Zp,∗ → Hp,∗ → 0

is an exact sequence of complexes and everything commutes with the exact sequence 0→ Bp(C•)→ Zp(C•)→
Hp(C•)→ 0. Now, we have the exact sequence

0→ Zp(C•)→ Cp → Bp+1(C•)→ 0

with injective resolutions Zp,∗ and Bp+1,∗ for Zp(C•) and Bp+1(C•). We can thus find an injective resolution
Ip,• for Cp such that

0→ Zp,∗ → Ip,∗ → Bp+1,∗ → 0.
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We now claim that I•,• is the desired double complex. Indeed, consider the double complex

...
...

...

· · · Ip−1,2 Ip,2 Ip+1,2 · · ·

· · · Ip−1,1 Ip,1 Ip+1,1 · · ·

· · · Ip−1,0 Ip,0 Ip+1,0 · · ·

· · · Cp−1 Cp Cp+1 · · ·

0 0 0

where the columns are exact. Here, the maps Ip,q → Ip+1,q arise by the composition

Ip,q � Bp+1,q ↪→ Zp+1,q ↪→ Ip+1,q.

Let us take the cohomology of the complex I•,q for q ≥ 1. Notice that

ker(Ip,q → Ip+1,q) = ker(Ip,q → Bp+1,q) = Zp,q

and
im(Ip,q → Ip+1,q) = Bp+1,q.

Hence, we see that Zp(I•,∗) = Zp,∗, Bp(I•,∗) = Bp,∗, and Hp(I•,∗) = Hp,∗. The result follows.

Definition. Suppose F : C → D is an additive left-exact functor of abelian categories, with right-derived
functors RiF . An object C ∈ C is said to be F -acyclic if RiF (C) = 0 for all i ≥ 1.

Theorem A.14 (Grothendieck Spectral Sequence). Suppose F : A → B and G : B → C are left-exact additive
(covariant) functors of abelian categories. Notice that G ◦ F : A → C is also left-exact. Suppose A and B have
enough injectives, and that F sends injective elements of A to G-acyclic elements of B.

Then, for each X ∈ A, there is a first-quadrant spectral sequence E•,••,→ with rightward orientation whose
second page is Ep,q2,→ := RqG

(
RpF (X)

)
(the second page is uniquely defined, though the first two pages require

choices) such that
RqG

(
RpF (X)

)
⇒ Rp+q(G ◦ F )(X).

Proof. Choose an injective resolution J• of X. By left-exactness of F , we have

0→ FX → FJ0 → FJ1 → · · · .

Let I•,• be a Cartan-Eilenberg resolution of the complex FJ•. Consider the spectral sequence whose 0th page
is E•,•0 = GI•,•. Taking upward orientation first, and noticing that Ip,• is an injective resolution of FJp, we
see that

Ep,q1,↑
∼= (RqG)(FJp).

However, by assumption FJp is acyclic for all p, and so (RqG)(FJp) = 0 for all p and all q ≥ 1. For q = 0, we
simply have G(FJp) = (G ◦ F )(Jp). Taking cohomology again, we see that the spectral sequence converges on
the second page to Rp(G ◦ F )(X).

We now evaluate the second page of this spectral sequence with rightward orientation. Clearly Ep,∗1,→ =
Hp(GI•,∗). Now, applying the left exact functor G to

0→ Zp(I•,q)→ Ip,q → Ip+1,q,

we get that
G
(
Zp(I•, q)

) ∼= ker(GIp,q → GIp+1,q) =: Zp(GI•,q).

Thus G “commutes” with Zp. Applying the left exact G to the split exact sequences

0→ Bp(I•,q)→ Zp(I•,q)→ Hp(I•,q)→ 0
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0→ Zp(I•,q)→ Ip,q → Bp+1(I•,q)→ 0

we have the exact sequences

0→ GBp(I•,q)→ GZp(I•,q)→ GHp(I•,q)→ 0

0→ GZp(I•,q)→ GIp,q → GBp+1(I•,q)→ 0.

The latter exact sequence implies that G “commutes” with Bp, and the former then implies that G “commutes”
with Hp. Hence, Ep,∗1,→ = GHp(I•,∗). Since I•,• is a Cartan-Eilenberg resolution, Hp(I•,∗) is an injective

resolution of Hp(FJ•) =: (RpF )(X), and so taking cohomology of GHp(I•,∗) = Ep,∗1,→ we get

Ep,q2,→ = (RqG)
(
(RpF )(X)

)
.

Since we know that E•,•• converges to R•(G ◦ F )(X), the result follows.

In fact, more is true though we won’t prove it in this complete generality.

Theorem A.15. With the same conditions on F and G as above, there is a cohomological spectral functor

X 7→ E(X) = (E•,•• (X), E•(X))

from A to the category of (cohomological) spectral sequences in C given by

Ep,q2 (X) = RqG(RpF (X)), and En = Rn(G ◦ F )(X).

A.4 The Category of Chain Complexes, and Derived Categories

We follow [Wei94], though we only work with cochain complexes.

A.4.1 Chain Complexes

Definition. Given an abelian category A, define the category Ch•(A) of cochain complexes whose objects are
cochain complexes

C• : · · · d
−3

−−→ C−2 d−2

−−→ C−1 d−1

−−→ C0 d0

−→ C1 d1

−→ C2 d2

−→ · · ·

where each Ci ∈ A and every composition dn+1 ◦ dn is the zero map. The maps dn are called the coboundary
maps of C•.

A cochain complex is exact if coker dn = ker dn+1.
Morphisms of cochain complexes f• : C• → D• such that dnD ◦ fn = fn+1 ◦ dnC for all n ∈ Z. Addition of

morphisms is done degree wise.
The full-subcategory Ch•≥0(A) of those cochain complexes C• such that Cn = 0 for all n < 0.

Lemma A.16. Suppose f• : C• → D• is a morphism of cochain complexes in Ch•(A).

1. ker f• is the cochain complex given by (ker f•)n = ker fn with the coboundary maps induced by those on
C•.

2. coker f• is the cochain complex given by (coker f•)n = coker fn with the coboundary maps induced by those
on D•.

In particular, every morphism in Ch•(A) has a kernel and a cokernel. Also, the kernel and cokernel of a
morphism in the full-subcategory Ch•≥0(A) also lies in Ch•≥0(A).

Remark A.17. This lemma is very powerful, since it allows us to extend results about kernels and cokernels in
A to results about kernels and cokernels in Ch•(A). For instance, it shows that the sequence 0→ A• → B• →
C• → 0 is an exact sequence of chain modules if and only if for each n the sequence 0→ An → Bn → Cn → 0
is exact.

Proof. We prove the first statement only, since the second statement is formally dual. The final statement that
Ch•≥0(A) is closed under taking kernels and cokernels follows because fn : 0→ 0 for all n < 0.

Denote ιn : ker fn → Cn the kernel map. The morphism dnC ◦ ιn : ker fn → Cn+1 satisfies

fn+1 ◦ (dnC ◦ ιn) = fn+1 ◦ dnC ◦ ιn = dnD ◦ fn ◦ ιn = 0,
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and so factors through ker fn+1. Thus, there exist maps dn : ker fn → ker fn+1 such that dnC ◦ ιn = ιn+1 ◦ dn.
Consider the commutative diagram

· · · ker fn−1 ker fn ker fn+1 · · ·

· · · Cn−1 Cn Cn+1 · · ·

· · · Dn−1 Dn Dn+1 · · ·

fn−1 fn fn+1

ιn−1 ιn ιn+1

Since
ιn+1 ◦ dn ◦ dn−1 = dnC ◦ ιn ◦ dn−1 = dnC ◦ dn−1

C ◦ ιn−1 = 0

where ιn−1 is monic, it follows that dn ◦ dn−1 is 0. Hence Kn := ker fn with coboundary maps dnK = dn gives
a cochain complex, and moreover ι• : K• → C• is a chain morphism.

It remains to show that K• satisfies the universal property of kernels. So suppose that g• : B• → C•

is a cochain morphism such that f• ◦ g• is the zero morphism from B• → D•. Then, at each n, the map
fn ◦ gn : Bn → Dn is the zero map. The universal property of kernels in A then implies the existence of
hn : Bn → Kn such that gn = ιn ◦ hn. We claim that h• is a chain map. Indeed, we have

ιn+1 ◦ (dnK ◦ hn) = dnC ◦ ιn ◦ hn = dnC ◦ gn = gn+1 ◦ dnB = ιn+1 ◦ hn+1 ◦ dnB .

Since ιn+1 is monic, it then follows that dnK ◦ hn = hn+1 ◦ dnB . Therefore h• is a chain map, and the claim
follows.

Corollary A.17.1. A morphism f• : C• → D• is monic in Ch•(A) if and only if fn : Cn → Dn is monic in
A for all n. Similarly, f• : C• → D• is epic in Ch•(A) if and only if fn : Cn → Dn is epic in A for all n.

Proof. The first statement follows from the general category-theoretic fact that, in a category C with a zero
object, a morphism A→ B with kernel K → A is monic if and only if K = 0. The second statement is formally
dual.

Proposition A.18. Ch•(A) is an abelian category whenever A is an abelian category. Moreover, Ch•≥0(A) is
an abelian subcategory.

Proof. The lemma already shows that all kernels and cokernels exist. The previous corollary implies that for
f• : C• → D• monic, each fn is monic and so fn = ker coker fn. Since kernels and cokernels are constructed
degree-wise, it follows that f• = ker coker f•. Similarly, all epic maps in Ch•(A) are the cokernels of their
kernels. That Ch•≥0(A) is an abelian category follows because it is a full-subcategory of the abelian category
Ch•(A) that is closed under taking kernels and cokernels.

Definition. Given C• ∈ Ch•(A) and given m ∈ Z, define the complex C•[m] ∈ Ch•(A) by(
C•[m]

)n
:= Cn+m, and dnC•[m] = (−1)mdn+m.

It is easy to see that the assignment C• 7→ C•[m] defines an additive exact functor (−)[m] : Ch•(A)→ Ch•(A).

Definition. Given a cochain C• ∈ Ch•(A) with coboundary maps dn : Cn → Cn+1, we have the n-cocycles
Zn(C•) := ker dn and the n-coboundaries Bn(C•) := im dn−1.

Lemma A.19. There is a canonically induced monomorphism Bn(C•) ↪→ Zn(C•).

Proof. Fix n. The map dn−1 : Cn−1 → Cn factors as Cn−1 � Bn(C•) ↪→ Cn. Since dn ◦ dn−1 = 0, the

composition Cn−1 � Bn → Cn+1 is zero, and so the map Bn ↪→ Cn
dn−→ Cn+1 is zero. Hence, this map factors

as Bn → Zn. It remains to show that this is monic. However, we know that Bn → Zn ↪→ Cn is itself the monic
map Bn ↪→ Cn, which implies that Bn → Zn is monic.

Definition. The cokernel of the map Bn(C•) ↪→ Zn(C•) is called the nth cohomology of C•, denoted by
Hn(C•).
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Notice that, by definition, we have for each n ∈ Z the exact sequence

0→ Bn(C•)→ Zn(C•)→ Hn(C•)→ 0.

Also, since im = coker ker in an abelian category, it follows that Bn+1(C•) = im dn = coker (ker dn) =
coker (Zn ↪→ Cn). We thus have the exact sequence

0→ Zn(C•)→ Cn → Bn+1(C•)→ 0

as well.

Lemma A.20. A morphism f• : C• → D• induces unique natural morphisms Zn(C•)→ Zn(D•), Bn(C•)→
Bn(D•), and Hn(C•)→ Hn(D•) for all n ∈ Z such that for each n ∈ Z the diagrams

0 Bn(C•) Zn(C•) Hn(C•) 0

0 Bn(D•) Zn(D•) Hn(D•) 0

and

0 Zn(C•) Cn Bn+1(C•) 0

0 Zn(D•) Dn Bn+1(D•) 0

dnC

dnD

with exact rows commutes.

Proof. Consider the diagram

Cn−1 Zn(C•) Cn Bn+1(C•) Cn+1

Dn−1 Zn(D•) Dn Bn+1(D•) Dn+1

dn−1
C dnC

dn−1
D dnD

fn−1 fn fn+1

The composition Zn(C•) ↪→ Cn
fn−−→ Dn dnD−−→ Dn+1 is zero since Zn(C•) = ker dnC and since the right solid

rectangle commutes. Hence, the composition Zn(C•) ↪→ Cn
fn−−→ Dn uniquely factors through ker dnD = Zn(D•).

This uniquely induces the leftmost dashed arrow, which moreover commutes with everything in sight. Similarly,
the composition dnD ◦ fn : Cn → Bn+1(D•) is zero when composed with Zn(C•) → Cn, and so uniquely
factors through coker (Zn(C•) ↪→ Cn) = Bn+1(C•). This yields the rightmost dashed arrow, which moreover
commutes with everything in sight. This gives the second diagram in the statement of the proposition. Since
Hn = coker (Bn → Zn), it follows that the maps Zn(C•) → Zn(D•) and Bn(C•) → Bn(D•) induce the map
Hn(C•)→ Hn(D•). The lemma follows.

Proposition A.21. For each n ∈ Z, the three assignments C• 7→ Zn(C•), C• 7→ Bn(C•), and C• 7→ Hn(C•)
give covariant additive functors Zn, Bn, Hn from Ch•(A) to A.

Proof. Uniqueness in the previous lemma implies that Hn sends the identity to the identity. Moreover, if we

have morphisms C•
f•−→ D•

g•−→ E•, then we may graft the commutative diagrams from the previous lemma
induced by f• and g• to get the two commutative diagrams

0 Bn(C•) Zn(C•) Hn(C•) 0

0 Bn(D•) Zn(D•) Hn(D•) 0

0 Bn(E•) Zn(E•) Hn(E•) 0

Bn(g•) Zn(g•) Hn(g•)

Bn(f•) Zn(f•) Hn(f•)
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and

0 Zn(C•) Cn Bn+1(C•) 0

0 Zn(D•) Dn Bn+1(D•) 0

0 Zn(E•) En Bn+ 1n(E•) 0

Zn(g•) gn Bn+1(g•)

Zn(f•) fn Bn+1(f•)

for all n ∈ Z, in which all rows are exact. The uniqueness clause of the previous lemma then implies that
Zn(g•)◦Zn(f•) = Zn(g• ◦f•), Bn(g•)◦Bn(f•) = Bn(g• ◦f•), and Hn(g•)◦Hn(f•) = Hn(g• ◦f•). The result
follows.

Theorem A.22 (Long Exact Sequence). Given a short exact sequence 0 → C•
f•−→ D•

g•−→ E• → 0 of chain
complexes in Ch(A), there exist natural maps ∂ : Hn(E•) → Hn+1(C•) called connecting homomorphisms,
such we have a long exact sequence

· · · H
n−1(g•)−−−−−−→ Hn−1(E•)

∂−→ Hn(C•)
Hn(f•)−−−−−→ Hn(D•)

Hn(g•)−−−−−→ Hn(E•)
∂−→ Hn+1(C•)

Hn+1(f•)−−−−−−→ · · · .

The connecting homomorphisms are natural in the sense that for any commuting diagram

0 C•1 D•1 E•1 0

0 C•2 D•2 E•2 0

there is a commutative ladder diagram

· · · Hn(C•1 ) Hn(D•1) Hn(E•1 ) Hn+1(C•1 ) · · ·

· · · Hn(C•2 ) Hn(D•2) Hn(E•2 ) Hn+1(C•2 ) · · ·

∂ ∂

∂ ∂

Proof. The Snake Lemma applied to the commutative diagram

0 Cn Dn En 0

0 Cn+1 Dn+1 En+1 0

dnC dnD dnE

with exact rows yields the exact sequence

0→ Zn(C•)→ Zn(D•)→ Zn(E•)→ coker dnC → coker dnD → coker dnE → 0.

In particular, in the commutative diagram

coker dn−1
C coker dn−1

D coker dn−1
E 0

0 Zn+1(C•) Zn+1(D•) Zn+1(E•)

dnC dnD dnE

both rows are exact. Let us study the kernel and cokernel of the map coker dn−1 → Zn+1C•, where we write
dn−1 for dn−1

C . Recall that this map is the composition coker dn−1 � im dn = Bn+1C• ↪→ Zn+1C•. In
particular, this implies that

coker
(
coker dn−1 → Zn+1C•

)
= coker

(
Bn+1C• ↪→ Zn+1C•

)
=: Hn+1C•.

Similarly,
ker
(
coker dn−1 → Zn+1C•

)
= ker

(
coker dn−1 � Bn+1

)
.

However, the Snake Lemma applied to the commutative diagram

0 Bn Cn−1 coker dn−1 0

0 Zn Cn Bn+1 0
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where both rows are exact shows that

ker
(
coker dn−1 � Bn+1

)
= coker (Bn → Zn) = HnC•.

Thus, the Snake Lemma applied to the commutative diagram with exact rows

coker dn−1
C coker dn−1

D coker dn−1
E 0

0 Zn+1(C•) Zn+1(D•) Zn+1(E•)

dnC dnD dnE

yields the six term exact sequence

HnC• → HnD• → HnE• → Hn+1C• → Hn+1D• → Hn+1E•.

Patching these six term exact sequences together yields the long exact sequence.
We now need to show functoriality. By functoriality of Hn, it suffices to show that the diagram

HnE•1 Hn+1C•1

HnE•2 Hn+1C•2

∂

∂

commutes. This follows from the corresponding functoriality properties of the connecting homomorphism in
the Snake Lemma.

A.4.2 (Co)Chain Homotopies and Quasi-Isomorphisms

Definition. A morphism f• : C• → D• is said to be null-homotopic if there exist maps sn : Cn → Dn−1 such
that

fn = dn−1
D ◦ sn + sn+1 ◦ dnC

as maps from Cn → Dn. The sequence of maps {sn} is called the cochain contraction of f .
Two morphisms f•, g• : C• → D• are said to be (cochain) homotopic if f• − g• is null-homotopic. The

cochain contraction {sn} corresponding to f• − g• is called a cochain homotopy from f• to g•. It is obvious
that the relationship of being cochain homotopic induces an equivalence relation on HomCh•(A)(C

•, D•).
A morphism f• : C• → D• is a cochain homotopy equivalence if there exists a morphism g• : D• → C• such

that g• ◦ f• and f• ◦ g• are cochain homotopic to the respective identity morphisms on C• and D• respectively.

Lemma A.23. A null-homotopic cochain morphism f• : C• → D• induces the zero map on cohomology, i.e.
Hn(f•) = 0 for all n ∈ Z.

Proof. Write fn = dn−1
D ◦ sn + sn+1 ◦ dnC for a cochain contraction {sn}. It suffices to show that Zn(f•) :

ZnC• → ZnD• factors through BnD• → ZnD•. Notice that Zn(f•) is the map induced by the composition

ZnC• ↪→ Cn
fn−−→ Dn. Now, as ZnC• = ker dnC , it follows that the composition ZnC• ↪→ Cn

sn+1dnC−−−−−→ Dn is

identically zero. Thus the composition ZnC• ↪→ Cn
fn−−→ Dn is equal to the composition ZnC• ↪→ Cn

dn−1
D sn

−−−−−→
Dn. However, this factors through BnD• ↪→ Dn since dn−1

D factors through BnD• ↪→ Dn. Hence Zn(f•)
factors through BnD• ↪→ Dn as required.

Corollary A.23.1. If two cochain morphisms f•, g• : C• → D• are homotopic, then Hnf• = Hng• as
morphisms in A for all n ∈ Z.

Definition. A cochain morphism f• : C• → D• is said to be a quasi-isomorphism if Hnf• : HnC• → HnD•

is an isomorphism in A for all n ∈ Z. Two cochains are quasi-isomorphic if there exists a quasi-isomorphism
from one to the other.

Lemma A.24. The following are equivalent for a cochain C• ∈ Ch•(A):

1. C• is exact, i.e. BnC• ∼= ZnC• for all n ∈ Z;

2. HnC• = 0 for all n ∈ Z;

3. The canonical cochain map 0• ↪→ C• is a quasi-isomorphism.
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Proof. The equivalence (1) ⇔ (2) is trivial since coker (BnC• ↪→ ZnC•) = HnC•, and since in an abelian
category a morphism is epic if and only if it has trivial cokernel, and a morphism is an isomorphism if and only
if it is both monic and epic. The equivalence (2) ⇔ (3) is also trivial, since Hn(0• ↪→ C•) : 0 ↪→ HnC• is an
isomorphism if and only if HnC• = 0.

Lemma A.25. Consider the equivalence relation on HomCh•(A)(C
•, D•) given by f• ∼ g• if and only if f• and

g• are homotopic. Then, the set of equivalence classes HomCh•(A)(C
•, D•)/ ∼ naturally inherits the abelian

group structure on HomCh•(A)(C
•, D•).

Proof. Notice that f• ∼ g• if and only if f• − g• is null-homotopic. The result then follows if we show
that the subset of HomCh•(A)(C

•, D•) consisting of null-homotopic maps is a subgroup of the abelian group
HomCh•(A)(C

•, D•). This is obvious however, since the zero map 0• : C• → D• is obviously null-homotopic,
and if f• and g• are null-homotopic with cochain contractions {sn} and {tn}, then

fn + gn = dn−1
D sn + sn+1dnC + dn−1

D tn + tn+1dnC = dn−1
D (sn + tn) + (sn+1 + tn+1)dnC

and so f• + g• is null-homotopic with cochain contraction {sn + tn}.

Lemma A.26. Suppose we have cochain morphisms u• : B• → C•, f•, g• : C• → D•, and v• : D• → E•. If
f• and g• are homotopic, then so are v•f•u• and v•g•u•.

Proof. If {sn} is a cochain homotopy from f• to g•, then it is easy to see that {vn−1 ◦ sn ◦ un} is a cochain
homotopy from v•f•u• to v•g•u•.

The previous two lemmas yield the following.

Lemma-Definition. There is an additive category K•(A) whose objects are the same as objects of Ch•(A) (i.e.
cochain complexes) and whose morphisms are the set of homotopy equivalence classes of HomCh•(A)(C

•, D•).
Moreover, the obvious functor Ch•(A)→ K•(A) is additive.

This category is the homotopy category of chain complexes of A. The functor Ch•(A) → K•(A) is often
called the projection functor.

For any full subcategory C of Ch•(A), we have a full subcategory K ⊂ K•(A) whose objects are the cochain
complexes in C. Then, the restriction of the projection functor Ch•(A)→ K•(A) to C yields another projection
functor C → K, in the sense that HomK is still the quotient of HomC by homotopy equivalence. In particular,
we have the full subcategory K•≥0(A) of K(A) corresponding to Ch•≥0(A).

Remark A.27. The homotopy category is usually not an abelian category.

Remark A.28. From now on, we will drop the superscript bullets in our notation, for simplicity. The reason is
that in the literature, the derived category is always constructed from the category of cochain complexes, and
so in this appendix we will always fix our numbering to be cohomological.

We will also now drop the superscript bullet from C• ∈ Ch(A) and from f• : C• → D•, instead writing
C ∈ Ch(A) and f : C → D. Again, this shouldn’t cause confusion.

Since cochain homotopic maps induce the same morphisms on cohomology, we have the following lemma.

Lemma A.29. The cohomology Hn(C) of a cochain complex C induces a well-defined family of functors

Hn : K(A) → A. Moreover, the composition of functors Ch(A) → K(A)
Hn−−→ A corresponds to the family of

functors Hn : Ch(A)→ A given in the previous subsection.

We omit the proof of the following proposition (see [Wei94, Proposition 10.1.2])

Proposition A.30 (Universal Property of the Homotopy Category). Suppose F : Ch(A) → D is any functor
that sends homotopy equivalences to isomorphisms. Then, F factors uniquely as Ch(A)→ K(A)→ D.

A.5 The Derived Category

In order to define the derived category, we need to define localizations of categories.

Definition. Let S be a collection of morphisms in a category C. A localization of C with respect to S is a
category S−1C together with a functor q : C → S−1C such that

1. q(s) is an isomorphism in S−1C for all s ∈ S; and

2. any functor F : C → D such that F (s) is an isomorphism for all s ∈ S factors uniquely through q.
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As usual, the localization of a category (if it exists) is unique up to unique equivalence.

Example A.31. Consider the category Ch(A) for an abelian category A, and let S be the collection of chain
homotopy equivalences. Then the universal property of the homotopy category implies that K(A) is in fact the
localization S−1Ch(A).

Definition. Let A be an abelian category. Let Q be the collection of all quasi-isomorphisms in K(A). The
derived category D(A) of A is defined to be the localization Q−1K(A).

Similarly, we can define D≥0(A) (resp. D≤0(A)) to be the localization Q−1K≥0(A) (resp. Q−1K≤0(A)). We
can also localize other full subcategories of K(A); for instance the category K+(A) of all cochains in A bounded
below to get D+(A), or the category K−(A) of all cochains in A bounded above to get D−(A), or the category
Kb(A) = K+(A) ∩K−(A) of all bounded cochains to get Db(A).

Remark A.32. If Q̃ is the collection of all quasi-isomorphisms in K(A), then the derived category D(A) is
naturally equivalent to the localization of Ch(A) at Q̃, and so one could equally well define it directly this way.
However, in order to show existence, it is easier to explicitly describe the morphisms of Q−1K(A) instead of
directly working with Q̃−1Ch(A).

We will sweep set-theoretic issues under the rug, though for sufficiently nice As they will not pose any
significant obstruction. Also, the existence of Cartan-Eilenberg resolutions for a category with enough injectives
(resp. projectives) allows one to construct D≥0(−) (resp. D≤0s(−)) without worrying about set-theoretic issues.

Definition. A collection S of morphisms in an additive category C is a multiplicative system in C if it satisfies
the following axioms:

M1 S is closed under composition and contains all identity morphisms;

M2 (Left Ore condition) if t : X → X ′ is in S and g : X → Y is an arbitrary morphism in C, then there exists
Y ′ ∈ C and there exist morphisms f : X ′ → Y ′ and s : Y → Y ′ such that

X Y

X ′ Y ′

g

t s

f

commutes and that s ∈ S.

M3 (Right Ore condition) if s : Y → Y ′ is in S and f : X ′ → Y ′ is an arbitrary morphism in C, then there
exists X ∈ C and there exist morphisms g : X → Y and t : Y → Y ′ such that the previous diagram
commutes and that t ∈ S.

M4 (Cancellation) For every pair of morphisms f, g : X → Y in C, the following are equivalent:

• there exists s ∈ S with source Y such that s ◦ f = s ◦ g;

• there exists t ∈ S with target X such that f ◦ t = g ◦ t.

Sweeping set-theoretic issues under the rug by assuming S and C are nice enough, we are now in a position
to define S−1C if S is a multiplicative system in the above sense. We take the objects of S−1C to be the objects
of C, and for X,Y ∈ S−1C we set

HomS−1C(X,Y ) := colim
X′∈IX

HomC(X
′, Y )

where IX is the category of objects X ′ equipped with morphisms s : X ′ → X such that s ∈ S. We define
composition as follows:

Suppose f ∈ HomS−1C(X,Y ) and g ∈ HomS−1C(Y,Z). Then, there exists s : X ′ → X with s ∈ S and there
exists t : Y ′ → Y with t ∈ S such that f : X ′ → Y and g : Y ′ → Z. By the Ore property, there exists X ′′ ∈ C
and morphisms f ′ : X ′′ → Y ′ and s′ : X ′′ → X ′ with s′ ∈ S such that t◦f ′ = f ◦s′. Then, (s◦s′ : X ′′ → X) ∈ S,
and we have the morphism g ◦ f ′ : X ′′ → Z. This then gives an element of HomS−1C(X,Z). Suppose we picked
a different X̄ ′′ with different morphisms f̄ ′ : X̄ ′′ → Y ′ and s̄′ : X̄ ′′ → X ′ with s̄′ ∈ S such that t ◦ f̄ ′ = f ◦ s̄′.
The ore condition then gives W ∈ C and maps s′′ : W → X ′′, s̄′′ : W → X̄ ′′ such that s′ ◦s′′ = s̄′ ◦ s̄′′ : W → X ′,
with s′′ ∈ S. Then we have a diagram

W Y ′

X ′ Y
f

ts̄′◦s̄′′=s′◦s′′

f ′◦s′′

f̄ ′◦s̄′′
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which computes. Thus t ◦ f ′ ◦ s′′ = f ◦ s′ ◦ s′′ = t ◦ f̄ ′ ◦ s̄′′. The cancellation property then implies the
existence of X̃ ∈ C and a s̃ : X̃ → W such that f ′ ◦ s′′ ◦ s̃ = f̄ ′ ◦ s̄′′ ◦ s̃. It then follows that the pair
(s ◦ s′ : X ′′ → X, g ◦ f ′ : X ′′ → Z) and (s ◦ s̄′ : X̄ ′′ → X, g ◦ f̄ ′ : X̄ ′′ → Z) both correspond to the same element

(s ◦ s′ ◦ s′′ ◦ s̃ : X̃ → X, g ◦ f ′ ◦ s′′ ◦ s̃ : X̃ → Z)

in the colimit defining HomS−1C(X,Z), where notice that s ◦ s′ ◦ s′′ ◦ s̃ ∈ S. Hence composition is well-defined.
It is clear that idX ∈ HomC(X,X)→ HomS−1C(X,X) since idX ∈ S.

Theorem A.33 (Gabriel-Zisman). The above description indeed makes S−1C a category. Moreover, it is the
localization of C at S.

Proof. We need to show that the above composition so-defined is associative, and that S−1C satisfies the
universal property of localizations. In the diagram below, we can add in all of the dashed lines by the ore
property, to get the following commutative diagram where all vertical arrows are in S.

W2 X1 Y ′ Z

W1 X ′ Y

W ′ X

W

w

f

x

g

y

h

w1

f1

w2

f2

g1

x′

It is then clear from this diagram that both h◦(g◦f) and (h◦g)◦f correspond to the element h◦g1◦f2 : W2 → Z
in the colimit defining HomS−1C(W,Z).

Now, the localization functor q : C → S−1C is given by the identity on the class of objects, and on morphisms
sends f : X → Y to the image of f in the colimit HomS−1C(X,Y ). It is clear that q sends morphisms in S to
isomorphisms in S−1C, since the inverse morphism of s : X → Y in HomS−1C(Y,X) is the image of idX under
HomC(X,X) → HomS−1C(Y,X). The universal property is also easy to see from the universal property of the
colimit.

Remark A.34. Throughout, we are only ever using the fact that S is right-multiplicative. This is a far weaker
condition. For S left multiplicative we then have

HomS−1C(X,Y ) = colimY ′∈IY HomC(X,Y
′)

where IY is the (filtered) category of objects Y ′ ∈ C with a morphism (Y → Y ′) ∈ S.
If S is multiplicative, then both definitions coincide.

Proposition A.35. Let A be an abelian category with homotopy category K(A). Recall the cohomology functors
Hn : K(A) → A. The set S of all quasi-isomorphisms (i.e. those morphisms f such that Hn(f) is an
isomorphism in A for all n ∈ Z) is multiplicative.

Proof. See [Ked, Proposition 10.3.3].

Definition. The derived category D(A) is the localization of K(A) at quasi-isomorphisms. Similarly we can
define the full subcategories D≥0(A), D≤0(A), and so on. Write Q : K(A)→ D(A) for the canonical localization
functor.

Since Hn : K(A) → A takes quasi-isomorphisms to isomorphisms (by definition), it induces the n’th coho-
mology functor Hn : D(A)→ A.

Remark A.36. Rather than thinking of objects of D(A) as honest cochain complexes, it is morally easier to
think of them as equivalence classes of cochain complexes up to quasi-isomorphism. Quite a few functors are
only defined up to quasi-isomorphism, for instance all derived functors.

Remark A.37. We also have the full subcategory D+(A) of all chains bounded below, i.e. the chains C ∈ D+(A)
such that HnC = 0 for all sufficiently negative n. We can similarly define the full subcategory D−(A) of all
chains that are bounded above. These are equivalent in an obvious way to the subcategories consisting of those
cochains C such that Cn = 0 for all sufficiently negative n, or all sufficiently positive n, respectively.

Suppose from now on that A has enough injectives. Then, we can describe D+(A) (the category of all
cochains homotopy equivalent to cochains C such that Cn = 0 for all n < 0).
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Lemma A.38. If I ∈ K(A) is a complex of injective objects, bounded below, then for any complex X ∈ D(A)
the canonical morphism

HomK(A)(X, I)→ HomD(A)(X, I)

is an isomorphism.

Proposition A.39. Suppose A has enough injectives. For each complex X ∈ D+(A) there is an injective
complex I bounded below quasi-isomorphic to X. Moreover, such an I is uniquely determined up to homotopy.

Definition. The above injective complex I quasi-isomorphic to X is called an injective resolution of X.

Proof. Suppose WLOG that Cn = 0 for n < 0. Let I•,• be a Cartan-Eilenberg resolution of C•, with the
differentials given by dp,qv : Ip,q → Ip,q+1 and dp,qh : Ip,q → Ip+1,q. Define

In :=
⊕
p+q=n

Ip,q, and dnI :=
∑

p+q=n

(dp,qv + dp,qh ).

By definition, we are given maps Cn → In,0, which then obviously extend to maps Cn → In. A quick argument
with the spectral sequence corresponding to the double complex E•,•0,→ = I•,• shows that Ep,q2,→ = 0 if q > 0 and

Ep,02,→ = HpC, and hence
HnC = HnI.

Hence the map C• → I• is a quasi-isomorphism. Using the previous lemma, we see that two injective resolutions
for C are canonically isomorphic in D(A).

Combining the previous lemma and the previous proposition, we get the following result.

Proposition A.40. Suppose A has enough injectives. The injective resolution functor D+(A)→ K(A) repre-
sents an equivalence of categories between D+(A) and the full subcategory of K(A) formed of injective complexes
bounded below.

A.6 Derived Functor

Consider an additive functor F : A → B between abelian categories A,B. Suppose also that A has enough
injectives. By defining it component-wise, we can extend this to an additive functor

F : D(A)→ D(B)

which takes homotopies to homotopies. Thus we get a naturally induced functor

F : K(A)→ K(B).

If F is moreover exact, then it sends quasi-isomorphisms to quasi-isomorphisms, and so we get an induced
functor

F : D(A)→ D(B).

If F is only left or right exact, then this is not possible. However, it is possible to define a derived functor
associated to F .

Definition. The (total) right derived functor (if it exists) of F : A → B is a functor RF : D(A) → D(B)
equipped with a natural transformation α : Q ◦ F ⇒ RF ◦ Q of functors from K(A) → D(B), satisfying the
following universal property: If G : D(A)→ D(B) is another functor, then the natural transformation α induces
a bijection

Hom(RF,G)→ Hom(Q ◦ F,G ◦Q), β 7→ (β ◦Q) ◦ α.

The following diagrams are useful:

K(A) K(B) Q ◦ F

D(A) D(B) RF ◦Q G ◦Q

F

Q

RF

Q
α

β◦Q

α

Remark A.41. We can define (total) left-derived functors LF similarly.

Remark A.42. The universal property of right derived functors is an example of a right Kan extension.
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Here, and throughout, we will always embed A ↪→ K(A) as a full subcategory by taking X ∈ A to the
cochain X• given by X0 = X and Xn = 0 for n 6= 0.

Definition. A complex X ∈ A is a dg-injective complex if Xn is injective for all n, and for all acyclic complexes
I every chain map I → X is null-homotopic.

Example A.43. All injective complexes that are bounded above or below are dg-injective complexes.

Theorem A.44. If A has enough injectives and F is an additive covariant left-exact functor, then RF exists
when restricted to a functor RF : D+(A)→ D(B).

If any of the following conditions hold:

• A and B are the category of abelian sheaves on a site (recall that regular ModR can also considered as an
abelian sheaf on some site); or

• for any quasi-isomorphism f : X → Y between dg-injective complexes X and Y , the cochain map Q◦F (f)
is an isomorphism in D(B);

then RF exists as a functor on the entire category D(A), i.e. RF : D(A)→ D(B) is well-defined.
The composition of functors

K+(A)
Q−→ D+(A)

RF−−→ D(B)
Hn−−→ B

for all n is a universal δ-functor, i.e. any short exact sequence of complexes

0→ X → Y → Z → 0

yields a long exact sequence

· · · → Rn−1F (Z)→ RnF (X)→ RnF (Y )→ RnF (Z)→ Rn+1F (X)→ · · ·

in a universal way. In fact, when restricted to the full subcategory A ⊂ K+(A), the above δ-functor is precisely
the n’th right-derived functor RnF described in the context of (universal) δ-functors.

Remark A.45. The full proof is incredibly hard, and also not very important. For D+(A), the proof uses a
Cartan-Eilenberg resolution. In fact, let C ∈ D+(A); then if I is an injective resolution of C it follows that

RF (C) = F (I).

More generally, a full additive subcategory I of A is said to be F -injective if the following conditions hold:

• every object of A is a subobject of an object in I;

• if 0→ A′ → A→ A′′ → 0 is exact in A, and A′ and A are in I, then A′′ is also in I;

• if 0→ A′ → A→ A′′ → 0 is exact in A, and A′ ∈ I, then

0→ FA′ → FA→ FA′′ → 0

is exact in B.

If A has enough injectives, then the subcategory of all injectives is also F -injective. Recall that an object is
F -acyclic if RnF (X) = 0 for all n > 0. The full subcategory of all F -acyclic objects in A is F -injective.

If I is an F -injective subcategory of A, then for every X ∈ D+(A) there exists I ∈ D+(A) with a quasi-
isomorphism X → I such that In ∈ I for all n ∈ Z; in such a case, FI is a well-defined object in D+(A), and
we have

RF (X) = FI.

Remark A.46. In almost all cases, we will only really need to consider RF on the category D+(A).

Definition. The objects Hn(RF ) : D(A) → A are called the (classical) nth right derived functors of F , and
are denoted by RnF .

The previous proposition tells us that this notion coincides with the previous notion of right derived functors
coming from universal δ-functors.

Remark A.47. It should be noted that RF contains strictly more information than the classical derived functors
RnF , since it tells us about the existence of quasi-isomorphisms between certain (not necessarily canonical)
cochain complexes.
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Lemma A.48. If F : A → B and G : B → C are left-exact functors and A has enough injectives, then we have
a canonical spectral sequence

RqG ◦RpF (X)⇒ Hp+q
(
RG ◦RF (X)

)
for all X ∈ D+(A).

Remark A.49. This shows how to construct a spectral sequence (for computation purposes) given the compo-
sition of two derived functors. Many classical statements giving spectral sequences are in fact proving some
statement about a composition of total derived functors and then taking nth cohomology (which loses informa-
tion!).

Remark A.50. The condition that X ∈ D+(A) is simply a mild boundedness condition just so that the spectral
sequence actually converges. It is a sufficient, but certainly not necessary, condition.

Theorem A.51 (Grothendieck Spectral Sequence). If F : A → B and G : B → C are additive left-exact
functors such that for every injective object M ∈ A, the objects RnF (M) is G-acyclic. Then,

R(G ◦ F ) = (RG) ◦ (RF ).

This formulation of the Grothendieck spectral sequence is in fact strictly stronger than the previous one. Not
only does it tell us that the cohomology of the total complex associated to the double complex RqG◦RpF (X) are
the same as the cohomology of R(G ◦ F )(X), it in fact tells us that these two complexes are quasi-isomorphic.
This is a strictly stronger condition since it is very easy to write down two complexes that are not quasi-
isomorphic whose cohomologies coincide.

Remark A.52. It is not true in general that R(G ◦ F ) = (RG) ◦ (RF )!

We conclude this section with a description of derived homs. Fix an abelian category A. For X,Y ∈ Ch(A)
with Y bounded below, consider

Homr(X,Y ) := HomCh(A)(X,Y [r])

where recall that Y [r]n = Y r+n and dnY [r] = (−1)rdn+r
Y . We can define a differential d : Homr(X,Y ) →

Homr+1(X,Y ) given by
df := dY ◦ f − (−1)rf ◦ dX

for f ∈ Homr(X,Y ). This yields a bifunctor

Hom• : K(A)op ×K+(A)→ K(Ab).

If A has enough injectives, we then get a corresponding (total) right derived functor

RHom : D(A)op ×D+(A)→ D(Ab).

We have canonical isomorphisms

HomD(A)(X,Y ) ∼= H0
(
RHom(X,Y )

)
and Hr

(
RHom(X,Y )

) ∼= HomD(A)(X,Y [r])

for all X ∈ D(A) and all Y ∈ D+(A).
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